Abstract:Research on autonomous driving in unstructured outdoor environments is less advanced than in structured urban settings due to challenges like environmental diversities and scene complexity. These environments-such as rural areas and rugged terrains-pose unique obstacles that are not common in structured urban areas. Despite these difficulties, autonomous driving in unstructured outdoor environments is crucial for applications in agriculture, mining, and military operations. Our survey reviews over 250 papers for autonomous driving in unstructured outdoor environments, covering offline mapping, pose estimation, environmental perception, path planning, end-to-end autonomous driving, datasets, and relevant challenges. We also discuss emerging trends and future research directions. This review aims to consolidate knowledge and encourage further research for autonomous driving in unstructured environments. To support ongoing work, we maintain an active repository with up-to-date literature and open-source projects at: https://github.com/chaytonmin/Survey-Autonomous-Driving-in-Unstructured-Environments.
Abstract:Speech-driven facial animation methods usually contain two main classes, 3D and 2D talking face, both of which attract considerable research attention in recent years. However, to the best of our knowledge, the research on 3D talking face does not go deeper as 2D talking face, in the aspect of lip-synchronization (lip-sync) and speech perception. To mind the gap between the two sub-fields, we propose a learning framework named Learn2Talk, which can construct a better 3D talking face network by exploiting two expertise points from the field of 2D talking face. Firstly, inspired by the audio-video sync network, a 3D sync-lip expert model is devised for the pursuit of lip-sync between audio and 3D facial motion. Secondly, a teacher model selected from 2D talking face methods is used to guide the training of the audio-to-3D motions regression network to yield more 3D vertex accuracy. Extensive experiments show the advantages of the proposed framework in terms of lip-sync, vertex accuracy and speech perception, compared with state-of-the-arts. Finally, we show two applications of the proposed framework: audio-visual speech recognition and speech-driven 3D Gaussian Splatting based avatar animation.
Abstract:A Colored point cloud, as a simple and efficient 3D representation, has many advantages in various fields, including robotic navigation and scene reconstruction. This representation is now commonly used in 3D reconstruction tasks relying on cameras and LiDARs. However, fusing data from these two types of sensors is poorly performed in many existing frameworks, leading to unsatisfactory mapping results, mainly due to inaccurate camera poses. This paper presents OmniColor, a novel and efficient algorithm to colorize point clouds using an independent 360-degree camera. Given a LiDAR-based point cloud and a sequence of panorama images with initial coarse camera poses, our objective is to jointly optimize the poses of all frames for mapping images onto geometric reconstructions. Our pipeline works in an off-the-shelf manner that does not require any feature extraction or matching process. Instead, we find optimal poses by directly maximizing the photometric consistency of LiDAR maps. In experiments, we show that our method can overcome the severe visual distortion of omnidirectional images and greatly benefit from the wide field of view (FOV) of 360-degree cameras to reconstruct various scenarios with accuracy and stability. The code will be released at https://github.com/liubonan123/OmniColor/.
Abstract:Navigating a nonholonomic robot in a cluttered environment requires extremely accurate perception and locomotion for collision avoidance. This paper presents NeuPAN: a real-time, highly-accurate, map-free, robot-agnostic, and environment-invariant robot navigation solution. Leveraging a tightly-coupled perception-locomotion framework, NeuPAN has two key innovations compared to existing approaches: 1) it directly maps raw points to a learned multi-frame distance space, avoiding error propagation from perception to control; 2) it is interpretable from an end-to-end model-based learning perspective, enabling provable convergence. The crux of NeuPAN is to solve a high-dimensional end-to-end mathematical model with various point-level constraints using the plug-and-play (PnP) proximal alternating-minimization network (PAN) with neurons in the loop. This allows NeuPAN to generate real-time, end-to-end, physically-interpretable motions directly from point clouds, which seamlessly integrates data- and knowledge-engines, where its network parameters are adjusted via back propagation. We evaluate NeuPAN on car-like robot, wheel-legged robot, and passenger autonomous vehicle, in both simulated and real-world environments. Experiments demonstrate that NeuPAN outperforms various benchmarks, in terms of accuracy, efficiency, robustness, and generalization capability across various environments, including the cluttered sandbox, office, corridor, and parking lot. We show that NeuPAN works well in unstructured environments with arbitrary-shape undetectable objects, making impassable ways passable.
Abstract:Motion deblurring is one of the fundamental problems of computer vision and has received continuous attention. The variability in blur, both within and across images, imposes limitations on non-blind deblurring techniques that rely on estimating the blur kernel. As a response, blind motion deblurring has emerged, aiming to restore clear and detailed images without prior knowledge of the blur type, fueled by the advancements in deep learning methodologies. Despite strides in this field, a comprehensive synthesis of recent progress in deep learning-based blind motion deblurring is notably absent. This paper fills that gap by providing an exhaustive overview of the role of deep learning in blind motion deblurring, encompassing datasets, evaluation metrics, and methods developed over the last six years. Specifically, we first introduce the types of motion blur and the fundamental principles of deblurring. Next, we outline the shortcomings of traditional non-blind deblurring algorithms, emphasizing the advantages of employing deep learning techniques for deblurring tasks. Following this, we categorize and summarize existing blind motion deblurring methods based on different backbone networks, including convolutional neural networks, generative adversarial networks, recurrent neural networks, and Transformer networks. Subsequently, we elaborate not only on the fundamental principles of these different categories but also provide a comprehensive summary and comparison of their advantages and limitations. Qualitative and quantitative experimental results conducted on four widely used datasets further compare the performance of SOTA methods. Finally, an analysis of present challenges and future pathways. All collected models, benchmark datasets, source code links, and codes for evaluation have been made publicly available at https://github.com/VisionVerse/Blind-Motion-Deblurring-Survey
Abstract:Camouflage object detection (COD) poses a significant challenge due to the high resemblance between camouflaged objects and their surroundings. Although current deep learning methods have made significant progress in detecting camouflaged objects, many of them heavily rely on additional prior information. However, acquiring such additional prior information is both expensive and impractical in real-world scenarios. Therefore, there is a need to develop a network for camouflage object detection that does not depend on additional priors. In this paper, we propose a novel adaptive feature aggregation method that effectively combines multi-layer feature information to generate guidance information. In contrast to previous approaches that rely on edge or ranking priors, our method directly leverages information extracted from image features to guide model training. Through extensive experimental results, we demonstrate that our proposed method achieves comparable or superior performance when compared to state-of-the-art approaches.
Abstract:Although remarkable progress has been made in recent years, current multi-exposure image fusion (MEF) research is still bounded by the lack of real ground truth, objective evaluation function, and robust fusion strategy. In this paper, we study the MEF problem from a new perspective. We don't utilize any synthesized ground truth, design any loss function, or develop any fusion strategy. Our proposed method EMEF takes advantage of the wisdom of multiple imperfect MEF contributors including both conventional and deep learning-based methods. Specifically, EMEF consists of two main stages: pre-train an imitator network and tune the imitator in the runtime. In the first stage, we make a unified network imitate different MEF targets in a style modulation way. In the second stage, we tune the imitator network by optimizing the style code, in order to find an optimal fusion result for each input pair. In the experiment, we construct EMEF from four state-of-the-art MEF methods and then make comparisons with the individuals and several other competitive methods on the latest released MEF benchmark dataset. The promising experimental results demonstrate that our ensemble framework can "get the best of all worlds". The code is available at https://github.com/medalwill/EMEF.
Abstract:Robot swarm is a hot spot in robotic research community. In this paper, we propose a decentralized framework for car-like robotic swarm which is capable of real-time planning in unstructured environments. In this system, path finding is guided by environmental topology information to avoid frequent topological change, and search-based speed planning is leveraged to escape from infeasible initial value's local minima. Then spatial-temporal optimization is employed to generate a safe, smooth and dynamically feasible trajectory. During optimization, penalty is imposed on signed distance between agents to realize collision avoidance, and differential flatness cooperated with limitation on front steer angle satisfies the non-holonomic constraints. With trajectories broadcast to the wireless network, agents are able to check and prevent from potential collisions. We validate the robustness of our system in simulation and real-world experiments. Code will be released as open-source packages.
Abstract:RGB-Thermal salient object detection (SOD) combines two spectra to segment visually conspicuous regions in images. Most existing methods use boundary maps to learn the sharp boundary. These methods ignore the interactions between isolated boundary pixels and other confident pixels, leading to sub-optimal performance. To address this problem,we propose a position-aware relation learning network (PRLNet) for RGB-T SOD based on swin transformer. PRLNet explores the distance and direction relationships between pixels to strengthen intra-class compactness and inter-class separation, generating salient object masks with clear boundaries and homogeneous regions. Specifically, we develop a novel signed distance map auxiliary module (SDMAM) to improve encoder feature representation, which takes into account the distance relation of different pixels in boundary neighborhoods. Then, we design a feature refinement approach with directional field (FRDF), which rectifies features of boundary neighborhood by exploiting the features inside salient objects. FRDF utilizes the directional information between object pixels to effectively enhance the intra-class compactness of salient regions. In addition, we constitute a pure transformer encoder-decoder network to enhance multispectral feature representation for RGB-T SOD. Finally, we conduct quantitative and qualitative experiments on three public benchmark datasets.The results demonstrate that our proposed method outperforms the state-of-the-art methods.
Abstract:As a core part of autonomous driving systems, motion planning has received extensive attention from academia and industry. However, there is no efficient trajectory planning solution capable of spatial-temporal joint optimization due to nonholonomic dynamics, particularly in the presence of unstructured environments and dynamic obstacles. To bridge the gap, we propose a versatile and real-time trajectory optimization method that can generate a high-quality feasible trajectory using a full vehicle model under arbitrary constraints. By leveraging the differential flatness property of car-like robots, we use flat outputs to analytically formulate all feasibility constraints to simplify the trajectory planning problem. Moreover, obstacle avoidance is achieved with full dimensional polygons to generate less conservative trajectories with safety guarantees, especially in tightly constrained spaces. We present comprehensive benchmarks with cutting-edge methods, demonstrating the significance of the proposed method in terms of efficiency and trajectory quality. Real-world experiments verify the practicality of our algorithm. We will release our codes as open-source packages with the purpose for the reference of the research community.