Abstract:We present EgoHDM, an online egocentric-inertial human motion capture (mocap), localization, and dense mapping system. Our system uses 6 inertial measurement units (IMUs) and a commodity head-mounted RGB camera. EgoHDM is the first human mocap system that offers dense scene mapping in near real-time. Further, it is fast and robust to initialize and fully closes the loop between physically plausible map-aware global human motion estimation and mocap-aware 3D scene reconstruction. Our key idea is integrating camera localization and mapping information with inertial human motion capture bidirectionally in our system. To achieve this, we design a tightly coupled mocap-aware dense bundle adjustment and physics-based body pose correction module leveraging a local body-centric elevation map. The latter introduces a novel terrain-aware contact PD controller, which enables characters to physically contact the given local elevation map thereby reducing human floating or penetration. We demonstrate the performance of our system on established synthetic and real-world benchmarks. The results show that our method reduces human localization, camera pose, and mapping accuracy error by 41%, 71%, 46%, respectively, compared to the state of the art. Our qualitative evaluations on newly captured data further demonstrate that EgoHDM can cover challenging scenarios in non-flat terrain including stepping over stairs and outdoor scenes in the wild.
Abstract:A Colored point cloud, as a simple and efficient 3D representation, has many advantages in various fields, including robotic navigation and scene reconstruction. This representation is now commonly used in 3D reconstruction tasks relying on cameras and LiDARs. However, fusing data from these two types of sensors is poorly performed in many existing frameworks, leading to unsatisfactory mapping results, mainly due to inaccurate camera poses. This paper presents OmniColor, a novel and efficient algorithm to colorize point clouds using an independent 360-degree camera. Given a LiDAR-based point cloud and a sequence of panorama images with initial coarse camera poses, our objective is to jointly optimize the poses of all frames for mapping images onto geometric reconstructions. Our pipeline works in an off-the-shelf manner that does not require any feature extraction or matching process. Instead, we find optimal poses by directly maximizing the photometric consistency of LiDAR maps. In experiments, we show that our method can overcome the severe visual distortion of omnidirectional images and greatly benefit from the wide field of view (FOV) of 360-degree cameras to reconstruct various scenarios with accuracy and stability. The code will be released at https://github.com/liubonan123/OmniColor/.