Abstract:While chain-of-thought (CoT) reasoning has substantially improved multimodal large language models (MLLMs) on complex reasoning tasks, existing approaches largely rely on long textual reasoning trajectories and provide limited mechanisms for learning stable visual attention policies. Our analysis shows that current MLLMs exhibit weak visual focus: early-stage visual misalignment is rarely corrected during subsequent reasoning, leading to error propagation and failed inferences. We argue that this limitation stems from inadequate credit assignment for visual attention during training. To address this issue, we propose SAYO, a visual reasoning model trained with a reinforcement learning (RL) framework that introduces a region-level visual attention-based reward. This reward explicitly aligns optimization signals with visually grounded reasoning steps, enabling the model to learn more reliable attention behaviors. Extensive experiments across multiple multimodal benchmarks demonstrate that SAYO consistently improves performance on diverse reasoning and perception tasks.
Abstract:Unified multimodal models (UMMs) have achieved remarkable progress yet remain constrained by a single-turn interaction paradigm, effectively functioning as solvers for independent requests rather than assistants in continuous dialogue. To bridge this gap, we present ChatUMM. As a conversational unified model, it excels at robust context tracking to sustain interleaved multimodal generation. ChatUMM derives its capabilities from two key innovations: an interleaved multi-turn training strategy that models serialized text-image streams as a continuous conversational flow, and a systematic conversational data synthesis pipeline. This pipeline transforms a diverse set of standard single-turn datasets into fluid dialogues through three progressive stages: constructing basic stateful dialogues, enforcing long-range dependency resolution via ``distractor'' turns with history-dependent query rewriting, and synthesizing naturally interleaved multimodal responses. Extensive evaluations demonstrate that ChatUMM achieves state-of-the-art performance among open-source unified models on visual understanding and instruction-guided editing benchmarks, while maintaining competitive fidelity in text-to-image generation. Notably, ChatUMM exhibits superior robustness in complex multi-turn scenarios, ensuring fluid, context-aware dialogues.
Abstract:We present the LEMAS-Dataset, which, to our knowledge, is currently the largest open-source multilingual speech corpus with word-level timestamps. Covering over 150,000 hours across 10 major languages, LEMAS-Dataset is constructed via a efficient data processing pipeline that ensures high-quality data and annotations. To validate the effectiveness of LEMAS-Dataset across diverse generative paradigms, we train two benchmark models with distinct architectures and task specializations on this dataset. LEMAS-TTS, built upon a non-autoregressive flow-matching framework, leverages the dataset's massive scale and linguistic diversity to achieve robust zero-shot multilingual synthesis. Our proposed accent-adversarial training and CTC loss mitigate cross-lingual accent issues, enhancing synthesis stability. Complementarily, LEMAS-Edit employs an autoregressive decoder-only architecture that formulates speech editing as a masked token infilling task. By exploiting precise word-level alignments to construct training masks and adopting adaptive decoding strategies, it achieves seamless, smooth-boundary speech editing with natural transitions. Experimental results demonstrate that models trained on LEMAS-Dataset deliver high-quality synthesis and editing performance, confirming the dataset's quality. We envision that this richly timestamp-annotated, fine-grained multilingual corpus will drive future advances in prompt-based speech generation systems.




Abstract:Time series analysis plays a vital role in fields such as finance, healthcare, industry, and meteorology, underpinning key tasks including classification, forecasting, and anomaly detection. Although deep learning models have achieved remarkable progress in these areas in recent years, constructing an efficient, multi-task compatible, and generalizable unified framework for time series analysis remains a significant challenge. Existing approaches are often tailored to single tasks or specific data types, making it difficult to simultaneously handle multi-task modeling and effectively integrate information across diverse time series types. Moreover, real-world data are often affected by noise, complex frequency components, and multi-scale dynamic patterns, which further complicate robust feature extraction and analysis. To ameliorate these challenges, we propose FusAD, a unified analysis framework designed for diverse time series tasks. FusAD features an adaptive time-frequency fusion mechanism, integrating both Fourier and Wavelet transforms to efficiently capture global-local and multi-scale dynamic features. With an adaptive denoising mechanism, FusAD automatically senses and filters various types of noise, highlighting crucial sequence variations and enabling robust feature extraction in complex environments. In addition, the framework integrates a general information fusion and decoding structure, combined with masked pre-training, to promote efficient learning and transfer of multi-granularity representations. Extensive experiments demonstrate that FusAD consistently outperforms state-of-the-art models on mainstream time series benchmarks for classification, forecasting, and anomaly detection tasks, while maintaining high efficiency and scalability. Code is available at https://github.com/zhangda1018/FusAD.
Abstract:Severe heatwaves in urban areas significantly threaten public health, calling for establishing early warning strategies. Despite predicting occurrence of heatwaves and attributing historical mortality, predicting an incoming deadly heatwave remains a challenge due to the difficulty in defining and estimating heat-related mortality. Furthermore, establishing an early warning system imposes additional requirements, including data availability, spatial and temporal robustness, and decision costs. To address these challenges, we propose DeepTherm, a modular early warning system for deadly heatwave prediction without requiring heat-related mortality history. By highlighting the flexibility of deep learning, DeepTherm employs a dual-prediction pipeline, disentangling baseline mortality in the absence of heatwaves and other irregular events from all-cause mortality. We evaluated DeepTherm on real-world data across Spain. Results demonstrate consistent, robust, and accurate performance across diverse regions, time periods, and population groups while allowing trade-off between missed alarms and false alarms.
Abstract:Accurate segmentation of marine organisms is vital for biodiversity monitoring and ecological assessment, yet existing datasets and models remain largely limited to terrestrial scenes. To bridge this gap, we introduce \textbf{AquaOV255}, the first large-scale and fine-grained underwater segmentation dataset containing 255 categories and over 20K images, covering diverse categories for open-vocabulary (OV) evaluation. Furthermore, we establish the first underwater OV segmentation benchmark, \textbf{UOVSBench}, by integrating AquaOV255 with five additional underwater datasets to enable comprehensive evaluation. Alongside, we present \textbf{Earth2Ocean}, a training-free OV segmentation framework that transfers terrestrial vision--language models (VLMs) to underwater domains without any additional underwater training. Earth2Ocean consists of two core components: a Geometric-guided Visual Mask Generator (\textbf{GMG}) that refines visual features via self-similarity geometric priors for local structure perception, and a Category-visual Semantic Alignment (\textbf{CSA}) module that enhances text embeddings through multimodal large language model reasoning and scene-aware template construction. Extensive experiments on the UOVSBench benchmark demonstrate that Earth2Ocean achieves significant performance improvement on average while maintaining efficient inference.
Abstract:Document AI has advanced rapidly and is attracting increasing attention. Yet, while most efforts have focused on document layout analysis (DLA), its generative counterpart, document layout generation, remains underexplored. A major obstacle lies in the scarcity of diverse layouts: academic papers with Manhattan-style structures dominate existing studies, while open-world genres such as newspapers and magazines remain severely underrepresented. To address this gap, we curate OmniLayout-1M, the first million-scale dataset of diverse document layouts, covering six common document types and comprising contemporary layouts collected from multiple sources. Moreover, since existing methods struggle in complex domains and often fail to arrange long sequences coherently, we introduce OmniLayout-LLM, a 0.5B model with designed two-stage Coarse-to-Fine learning paradigm: 1) learning universal layout principles from OmniLayout-1M with coarse category definitions, and 2) transferring the knowledge to a specific domain with fine-grained annotations. Extensive experiments demonstrate that our approach achieves strong performance on multiple domains in M$^{6}$Doc dataset, substantially surpassing both existing layout generation experts and several latest general-purpose LLMs. Our code, models, and dataset will be publicly released.
Abstract:Neural audio codecs have recently emerged as powerful tools for high-quality and low-bitrate audio compression, leveraging deep generative models to learn latent representations of audio signals. However, existing approaches either rely on a single quantizer that only processes speech domain, or on multiple quantizers that are not well suited for downstream tasks. To address this issue, we propose MelCap, a unified "one-codebook-for-all" neural codec that effectively handles speech, music, and general sound. By decomposing audio reconstruction into two stages, our method preserves more acoustic details than previous single-codebook approaches, while achieving performance comparable to mainstream multi-codebook methods. In the first stage, audio is transformed into mel-spectrograms, which are compressed and quantized into compact single tokens using a 2D tokenizer. A perceptual loss is further applied to mitigate the over-smoothing artifacts observed in spectrogram reconstruction. In the second stage, a Vocoder recovers waveforms from the mel discrete tokens in a single forward pass, enabling real-time decoding. Both objective and subjective evaluations demonstrate that MelCap achieves quality on comparable to state-of-the-art multi-codebook codecs, while retaining the computational simplicity of a single-codebook design, thereby providing an effective representation for downstream tasks.
Abstract:We introduce MinerU2.5, a 1.2B-parameter document parsing vision-language model that achieves state-of-the-art recognition accuracy while maintaining exceptional computational efficiency. Our approach employs a coarse-to-fine, two-stage parsing strategy that decouples global layout analysis from local content recognition. In the first stage, the model performs efficient layout analysis on downsampled images to identify structural elements, circumventing the computational overhead of processing high-resolution inputs. In the second stage, guided by the global layout, it performs targeted content recognition on native-resolution crops extracted from the original image, preserving fine-grained details in dense text, complex formulas, and tables. To support this strategy, we developed a comprehensive data engine that generates diverse, large-scale training corpora for both pretraining and fine-tuning. Ultimately, MinerU2.5 demonstrates strong document parsing ability, achieving state-of-the-art performance on multiple benchmarks, surpassing both general-purpose and domain-specific models across various recognition tasks, while maintaining significantly lower computational overhead.
Abstract:Recent advancements in text-to-image (T2I) diffusion models have demonstrated remarkable capabilities in generating high-fidelity images. However, these models often struggle to faithfully render complex user prompts, particularly in aspects like attribute binding, negation, and compositional relationships. This leads to a significant mismatch between user intent and the generated output. To address this challenge, we introduce PromptEnhancer, a novel and universal prompt rewriting framework that enhances any pretrained T2I model without requiring modifications to its weights. Unlike prior methods that rely on model-specific fine-tuning or implicit reward signals like image-reward scores, our framework decouples the rewriter from the generator. We achieve this by training a Chain-of-Thought (CoT) rewriter through reinforcement learning, guided by a dedicated reward model we term the AlignEvaluator. The AlignEvaluator is trained to provide explicit and fine-grained feedback based on a systematic taxonomy of 24 key points, which are derived from a comprehensive analysis of common T2I failure modes. By optimizing the CoT rewriter to maximize the reward from our AlignEvaluator, our framework learns to generate prompts that are more precisely interpreted by T2I models. Extensive experiments on the HunyuanImage 2.1 model demonstrate that PromptEnhancer significantly improves image-text alignment across a wide range of semantic and compositional challenges. Furthermore, we introduce a new, high-quality human preference benchmark to facilitate future research in this direction.