Abstract:Large language models (LLMs), with demonstrated reasoning abilities across multiple domains, are largely underexplored for time-series reasoning (TsR), which is ubiquitous in the real world. In this work, we propose TimerBed, the first comprehensive testbed for evaluating LLMs' TsR performance. Specifically, TimerBed includes stratified reasoning patterns with real-world tasks, comprehensive combinations of LLMs and reasoning strategies, and various supervised models as comparison anchors. We perform extensive experiments with TimerBed, test multiple current beliefs, and verify the initial failures of LLMs in TsR, evidenced by the ineffectiveness of zero shot (ZST) and performance degradation of few shot in-context learning (ICL). Further, we identify one possible root cause: the numerical modeling of data. To address this, we propose a prompt-based solution VL-Time, using visualization-modeled data and language-guided reasoning. Experimental results demonstrate that Vl-Time enables multimodal LLMs to be non-trivial ZST and powerful ICL reasoners for time series, achieving about 140% average performance improvement and 99% average token costs reduction.
Abstract:Hierarchical time-series forecasting (HTSF) is an important problem for many real-world business applications where the goal is to simultaneously forecast multiple time-series that are related to each other via a hierarchical relation. Recent works, however, do not address two important challenges that are typically observed in many demand forecasting applications at large companies. First, many time-series at lower levels of the hierarchy have high sparsity i.e., they have a significant number of zeros. Most HTSF methods do not address this varying sparsity across the hierarchy. Further, they do not scale well to the large size of the real-world hierarchy typically unseen in benchmarks used in literature. We resolve both these challenges by proposing HAILS, a novel probabilistic hierarchical model that enables accurate and calibrated probabilistic forecasts across the hierarchy by adaptively modeling sparse and dense time-series with different distributional assumptions and reconciling them to adhere to hierarchical constraints. We show the scalability and effectiveness of our methods by evaluating them against real-world demand forecasting datasets. We deploy HAILS at a large chemical manufacturing company for a product demand forecasting application with over ten thousand products and observe a significant 8.5\% improvement in forecast accuracy and 23% better improvement for sparse time-series. The enhanced accuracy and scalability make HAILS a valuable tool for improved business planning and customer experience.
Abstract:Effective imputation is a crucial preprocessing step for time series analysis. Despite the development of numerous deep learning algorithms for time series imputation, the community lacks standardized and comprehensive benchmark platforms to effectively evaluate imputation performance across different settings. Moreover, although many deep learning forecasting algorithms have demonstrated excellent performance, whether their modeling achievements can be transferred to time series imputation tasks remains unexplored. To bridge these gaps, we develop TSI-Bench, the first (to our knowledge) comprehensive benchmark suite for time series imputation utilizing deep learning techniques. The TSI-Bench pipeline standardizes experimental settings to enable fair evaluation of imputation algorithms and identification of meaningful insights into the influence of domain-appropriate missingness ratios and patterns on model performance. Furthermore, TSI-Bench innovatively provides a systematic paradigm to tailor time series forecasting algorithms for imputation purposes. Our extensive study across 34,804 experiments, 28 algorithms, and 8 datasets with diverse missingness scenarios demonstrates TSI-Bench's effectiveness in diverse downstream tasks and potential to unlock future directions in time series imputation research and analysis. The source code and experiment logs are available at https://github.com/WenjieDu/AwesomeImputation.
Abstract:Time-series forecasting (TSF) finds broad applications in real-world scenarios. Due to the dynamic nature of time-series data, it is crucial to equip TSF models with out-of-distribution (OOD) generalization abilities, as historical training data and future test data can have different distributions. In this paper, we aim to alleviate the inherent OOD problem in TSF via invariant learning. We identify fundamental challenges of invariant learning for TSF. First, the target variables in TSF may not be sufficiently determined by the input due to unobserved core variables in TSF, breaking the conventional assumption of invariant learning. Second, time-series datasets lack adequate environment labels, while existing environmental inference methods are not suitable for TSF. To address these challenges, we propose FOIL, a model-agnostic framework that enables timeseries Forecasting for Out-of-distribution generalization via Invariant Learning. FOIL employs a novel surrogate loss to mitigate the impact of unobserved variables. Further, FOIL implements a joint optimization by alternately inferring environments effectively with a multi-head network while preserving the temporal adjacency structure, and learning invariant representations across inferred environments for OOD generalized TSF. We demonstrate that the proposed FOIL significantly improves the performance of various TSF models, achieving gains of up to 85%.
Abstract:Time series data are ubiquitous across a wide range of real-world domains. While real-world time series analysis (TSA) requires human experts to integrate numerical series data with multimodal domain-specific knowledge, most existing TSA models rely solely on numerical data, overlooking the significance of information beyond numerical series. This oversight is due to the untapped potential of textual series data and the absence of a comprehensive, high-quality multimodal dataset. To overcome this obstacle, we introduce Time-MMD, the first multi-domain, multimodal time series dataset covering 9 primary data domains. Time-MMD ensures fine-grained modality alignment, eliminates data contamination, and provides high usability. Additionally, we develop MM-TSFlib, the first multimodal time-series forecasting (TSF) library, seamlessly pipelining multimodal TSF evaluations based on Time-MMD for in-depth analyses. Extensive experiments conducted on Time-MMD through MM-TSFlib demonstrate significant performance enhancements by extending unimodal TSF to multimodality, evidenced by over 15% mean squared error reduction in general, and up to 40% in domains with rich textual data. More importantly, our datasets and library revolutionize broader applications, impacts, research topics to advance TSA. The dataset and library are available at https://github.com/AdityaLab/Time-MMD and https://github.com/AdityaLab/MM-TSFlib.
Abstract:Since the onset of the COVID-19 pandemic, there has been a growing interest in studying epidemiological models. Traditional mechanistic models mathematically describe the transmission mechanisms of infectious diseases. However, they often fall short when confronted with the growing challenges of today. Consequently, Graph Neural Networks (GNNs) have emerged as a progressively popular tool in epidemic research. In this paper, we endeavor to furnish a comprehensive review of GNNs in epidemic tasks and highlight potential future directions. To accomplish this objective, we introduce hierarchical taxonomies for both epidemic tasks and methodologies, offering a trajectory of development within this domain. For epidemic tasks, we establish a taxonomy akin to those typically employed within the epidemic domain. For methodology, we categorize existing work into \textit{Neural Models} and \textit{Hybrid Models}. Following this, we perform an exhaustive and systematic examination of the methodologies, encompassing both the tasks and their technical details. Furthermore, we discuss the limitations of existing methods from diverse perspectives and systematically propose future research directions. This survey aims to bridge literature gaps and promote the progression of this promising field. We hope that it will facilitate synergies between the communities of GNNs and epidemiology, and contribute to their collective progress.
Abstract:Time-series forecasting (TSF) finds broad applications in real-world scenarios. Prompting off-the-shelf Large Language Models (LLMs) demonstrates strong zero-shot TSF capabilities while preserving computational efficiency. However, existing prompting methods oversimplify TSF as language next-token predictions, overlooking its dynamic nature and lack of integration with state-of-the-art prompt strategies such as Chain-of-Thought. Thus, we propose LSTPrompt, a novel approach for prompting LLMs in zero-shot TSF tasks. LSTPrompt decomposes TSF into short-term and long-term forecasting sub-tasks, tailoring prompts to each. LSTPrompt guides LLMs to regularly reassess forecasting mechanisms to enhance adaptability. Extensive evaluations demonstrate consistently better performance of LSTPrompt than existing prompting methods, and competitive results compared to foundation TSF models.
Abstract:Many real-world datasets can be naturally represented as graphs, spanning a wide range of domains. However, the increasing complexity and size of graph datasets present significant challenges for analysis and computation. In response, graph reduction techniques have gained prominence for simplifying large graphs while preserving essential properties. In this survey, we aim to provide a comprehensive understanding of graph reduction methods, including graph sparsification, graph coarsening, and graph condensation. Specifically, we establish a unified definition for these methods and introduce a hierarchical taxonomy to categorize the challenges they address. Our survey then systematically reviews the technical details of these methods and emphasizes their practical applications across diverse scenarios. Furthermore, we outline critical research directions to ensure the continued effectiveness of graph reduction techniques, as well as provide a comprehensive paper list at https://github.com/ChandlerBang/awesome-graph-reduction. We hope this survey will bridge literature gaps and propel the advancement of this promising field.
Abstract:Large pre-trained models have been instrumental in significant advancements in domains like language and vision making model training for individual downstream tasks more efficient as well as provide superior performance. However, tackling time-series analysis tasks usually involves designing and training a separate model from scratch leveraging training data and domain expertise specific to the task. We tackle a significant challenge for pre-training a general time-series model from multiple heterogeneous time-series dataset: providing semantically useful inputs to models for modeling time series of different dynamics from different domains. We observe that partitioning time-series into segments as inputs to sequential models produces semantically better inputs and propose a novel model LPTM that automatically identifies optimal dataset-specific segmentation strategy leveraging self-supervised learning loss during pre-training. LPTM provides performance similar to or better than domain-specific state-of-art model and is significantly more data and compute efficient taking up to 40% less data as well as 50% less training time to achieve state-of-art performance in a wide range of time-series analysis tasks from multiple disparate domain.
Abstract:Providing accurate and reliable predictions about the future of an epidemic is an important problem for enabling informed public health decisions. Recent works have shown that leveraging data-driven solutions that utilize advances in deep learning methods to learn from past data of an epidemic often outperform traditional mechanistic models. However, in many cases, the past data is sparse and may not sufficiently capture the underlying dynamics. While there exists a large amount of data from past epidemics, leveraging prior knowledge from time-series data of other diseases is a non-trivial challenge. Motivated by the success of pre-trained models in language and vision tasks, we tackle the problem of pre-training epidemic time-series models to learn from multiple datasets from different diseases and epidemics. We introduce Pre-trained Epidemic Time-Series Models (PEMS) that learn from diverse time-series datasets of a variety of diseases by formulating pre-training as a set of self-supervised learning (SSL) tasks. We tackle various important challenges specific to pre-training for epidemic time-series such as dealing with heterogeneous dynamics and efficiently capturing useful patterns from multiple epidemic datasets by carefully designing the SSL tasks to learn important priors about the epidemic dynamics that can be leveraged for fine-tuning to multiple downstream tasks. The resultant PEM outperforms previous state-of-the-art methods in various downstream time-series tasks across datasets of varying seasonal patterns, geography, and mechanism of contagion including the novel Covid-19 pandemic unseen in pre-trained data with better efficiency using smaller fraction of datasets.