Abstract:Multi-modal hashing methods are widely used in multimedia retrieval, which can fuse multi-source data to generate binary hash code. However, the individual backbone networks have limited feature expression capabilities and are not jointly pre-trained on large-scale unsupervised multi-modal data, resulting in low retrieval accuracy. To address this issue, we propose a novel CLIP Multi-modal Hashing (CLIPMH) method. Our method employs the CLIP framework to extract both text and vision features and then fuses them to generate hash code. Due to enhancement on each modal feature, our method has great improvement in the retrieval performance of multi-modal hashing methods. Compared with state-of-the-art unsupervised and supervised multi-modal hashing methods, experiments reveal that the proposed CLIPMH can significantly improve performance (a maximum increase of 8.38% in mAP).
Abstract:The multi-view hash method converts heterogeneous data from multiple views into binary hash codes, which is one of the critical technologies in multimedia retrieval. However, the current methods mainly explore the complementarity among multiple views while lacking confidence learning and fusion. Moreover, in practical application scenarios, the single-view data contain redundant noise. To conduct the confidence learning and eliminate unnecessary noise, we propose a novel Adaptive Confidence Multi-View Hashing (ACMVH) method. First, a confidence network is developed to extract useful information from various single-view features and remove noise information. Furthermore, an adaptive confidence multi-view network is employed to measure the confidence of each view and then fuse multi-view features through a weighted summation. Lastly, a dilation network is designed to further enhance the feature representation of the fused features. To the best of our knowledge, we pioneer the application of confidence learning into the field of multimedia retrieval. Extensive experiments on two public datasets show that the proposed ACMVH performs better than state-of-the-art methods (maximum increase of 3.24%). The source code is available at https://github.com/HackerHyper/ACMVH.
Abstract:The multi-modal hashing method is widely used in multimedia retrieval. It can fuse multi-source data to generate binary hash code. However, the current multi-modal methods have the problem of low retrieval accuracy. The reason is that the individual backbone networks have limited feature expression capabilities and are not jointly pre-trained on large-scale unsupervised multi-modal data. To solve this problem, we propose a new baseline CLIP Multi-modal Hashing (CLIPMH) method. It uses CLIP model to extract text and image features, and then fuse to generate hash code. CLIP improves the expressiveness of each modal feature. In this way, it can greatly improve the retrieval performance of multi-modal hashing methods. In comparison to state-of-the-art unsupervised and supervised multi-modal hashing methods, experiments reveal that the proposed CLIPMH can significantly enhance performance (Maximum increase of 8.38%). CLIP also has great advantages over the text and visual backbone networks commonly used before.
Abstract:Learning the hash representation of multi-view heterogeneous data is an important task in multimedia retrieval. However, existing methods fail to effectively fuse the multi-view features and utilize the metric information provided by the dissimilar samples, leading to limited retrieval precision. Current methods utilize weighted sum or concatenation to fuse the multi-view features. We argue that these fusion methods cannot capture the interaction among different views. Furthermore, these methods ignored the information provided by the dissimilar samples. We propose a novel deep metric multi-view hashing (DMMVH) method to address the mentioned problems. Extensive empirical evidence is presented to show that gate-based fusion is better than typical methods. We introduce deep metric learning to the multi-view hashing problems, which can utilize metric information of dissimilar samples. On the MIR-Flickr25K, MS COCO, and NUS-WIDE, our method outperforms the current state-of-the-art methods by a large margin (up to 15.28 mean Average Precision (mAP) improvement).