Abstract:Domain generalization methods aim to learn transferable knowledge from source domains that can generalize well to unseen target domains. Recent studies show that neural networks frequently suffer from a simplicity-biased learning behavior which leads to over-reliance on specific frequency sets, namely as frequency shortcuts, instead of semantic information, resulting in poor generalization performance. Despite previous data augmentation techniques successfully enhancing generalization performances, they intend to apply more frequency shortcuts, thereby causing hallucinations of generalization improvement. In this paper, we aim to prevent such learning behavior of applying frequency shortcuts from a data-driven perspective. Given the theoretical justification of models' biased learning behavior on different spatial frequency components, which is based on the dataset frequency properties, we argue that the learning behavior on various frequency components could be manipulated by changing the dataset statistical structure in the Fourier domain. Intuitively, as frequency shortcuts are hidden in the dominant and highly dependent frequencies of dataset structure, dynamically perturbating the over-reliance frequency components could prevent the application of frequency shortcuts. To this end, we propose two effective data augmentation modules designed to collaboratively and adaptively adjust the frequency characteristic of the dataset, aiming to dynamically influence the learning behavior of the model and ultimately serving as a strategy to mitigate shortcut learning. Code is available at AdvFrequency (https://github.com/C0notSilly/AdvFrequency).
Abstract:Facial expression datasets remain limited in scale due to privacy concerns, the subjectivity of annotations, and the labor-intensive nature of data collection. This limitation poses a significant challenge for developing modern deep learning-based facial expression analysis models, particularly foundation models, that rely on large-scale data for optimal performance. To tackle the overarching and complex challenge, we introduce SynFER (Synthesis of Facial Expressions with Refined Control), a novel framework for synthesizing facial expression image data based on high-level textual descriptions as well as more fine-grained and precise control through facial action units. To ensure the quality and reliability of the synthetic data, we propose a semantic guidance technique to steer the generation process and a pseudo-label generator to help rectify the facial expression labels for the synthetic images. To demonstrate the generation fidelity and the effectiveness of the synthetic data from SynFER, we conduct extensive experiments on representation learning using both synthetic data and real-world data. Experiment results validate the efficacy of the proposed approach and the synthetic data. Notably, our approach achieves a 67.23% classification accuracy on AffectNet when training solely with synthetic data equivalent to the AffectNet training set size, which increases to 69.84% when scaling up to five times the original size. Our code will be made publicly available.
Abstract:Multi-modal hashing methods are widely used in multimedia retrieval, which can fuse multi-source data to generate binary hash code. However, the individual backbone networks have limited feature expression capabilities and are not jointly pre-trained on large-scale unsupervised multi-modal data, resulting in low retrieval accuracy. To address this issue, we propose a novel CLIP Multi-modal Hashing (CLIPMH) method. Our method employs the CLIP framework to extract both text and vision features and then fuses them to generate hash code. Due to enhancement on each modal feature, our method has great improvement in the retrieval performance of multi-modal hashing methods. Compared with state-of-the-art unsupervised and supervised multi-modal hashing methods, experiments reveal that the proposed CLIPMH can significantly improve performance (a maximum increase of 8.38% in mAP).
Abstract:In this letter, we investigate the design of multiple reconfigurable intelligent sensing surfaces (RISSs) that enhance both communication and sensing tasks. An RISS incorporates additional active elements tailored to improve sensing accuracy. Our initial task involves optimizing placement of RISSs to mitigate signal interference. Subsequently, we establish power allocation schemes for sensing and communication within the system. Our final consideration involves examining how sensing results can be utilized to enhance communication, alongside an evaluation of communication performance under the impact of sensing inaccuracies. Numerical results reveal that the sensing task reaches its optimal performance with a finite number of RISSs, while the communication task exhibits enhanced performance with an increasing number of RISSs. Additionally, we identify an optimal communication spot under user movement.
Abstract:Schizophrenia is a serious psychiatric disorder. Its pathogenesis is not completely clear, making it difficult to treat patients precisely. Because of the complicated non-Euclidean network structure of the human brain, learning critical information from brain networks remains difficult. To effectively capture the topological information of brain neural networks, a novel multimodal graph attention network based on sparse interaction mechanism (Multi-SIGATnet) was proposed for SZ classification was proposed for SZ classification. Firstly, structural and functional information were fused into multimodal data to obtain more comprehensive and abundant features for patients with SZ. Subsequently, a sparse interaction mechanism was proposed to effectively extract salient features and enhance the feature representation capability. By enhancing the strong connections and weakening the weak connections between feature information based on an asymmetric convolutional network, high-order interactive features were captured. Moreover, sparse learning strategies were designed to filter out redundant connections to improve model performance. Finally, local and global features were updated in accordance with the topological features and connection weight constraints of the higher-order brain network, the features being projected to the classification target space for disorder classification. The effectiveness of the model is verified on the Center for Biomedical Research Excellence (COBRE) and University of California Los Angeles (UCLA) datasets, achieving 81.9\% and 75.8\% average accuracy, respectively, 4.6\% and 5.5\% higher than the graph attention network (GAT) method. Experiments showed that the Multi-SIGATnet method exhibited good performance in identifying SZ.
Abstract:We introduce Mini-Sequence Transformer (MsT), a simple and effective methodology for highly efficient and accurate LLM training with extremely long sequences. MsT partitions input sequences and iteratively processes mini-sequences to reduce intermediate memory usage. Integrated with activation recomputation, it enables significant memory savings in both forward and backward passes. In experiments with the Llama3-8B model, with MsT, we measure no degradation in throughput or convergence even with 12x longer sequences than standard implementations due to our careful memory optimizations. MsT is fully general, implementation-agnostic, and requires minimal code changes to integrate with existing LLM training frameworks.
Abstract:Recent advances in Large Language Models (LLMs) have significantly shaped the applications of AI in multiple fields, including the studies of legal intelligence. Trained on extensive legal texts, including statutes and legal documents, the legal LLMs can capture important legal knowledge/concepts effectively and provide important support for downstream legal applications such as legal consultancy. Yet, the dynamic nature of legal statutes and interpretations also poses new challenges to the use of LLMs in legal applications. Particularly, how to update the legal knowledge of LLMs effectively and efficiently has become an important research problem in practice. Existing benchmarks for evaluating knowledge update methods are mostly designed for the open domain and cannot address the specific challenges of the legal domain, such as the nuanced application of new legal knowledge, the complexity and lengthiness of legal regulations, and the intricate nature of legal reasoning. To address this gap, we introduce the Legal Knowledge Update BEnchmark, i.e. LeKUBE, which evaluates knowledge update methods for legal LLMs across five dimensions. Specifically, we categorize the needs of knowledge updates in the legal domain with the help of legal professionals, and then hire annotators from law schools to create synthetic updates to the Chinese Criminal and Civil Code as well as sets of questions of which the answers would change after the updates. Through a comprehensive evaluation of state-of-the-art knowledge update methods, we reveal a notable gap between existing knowledge update methods and the unique needs of the legal domain, emphasizing the need for further research and development of knowledge update mechanisms tailored for legal LLMs.
Abstract:Vision-language foundation models like CLIP have shown impressive zero-shot generalization, but finetuning on downstream datasets can cause overfitting and loss of its generalization ability on unseen domains. Although collecting additional data from new domains of interest is possible, this method is often impractical due to the challenges in obtaining annotated data. To address this, we propose a plug-and-play feature augmentation method called LDFS (Language-Guided Diverse Feature Synthesis) to synthesize new domain features and improve existing CLIP fine-tuning strategies. LDFS has three main contributions: 1) To synthesize novel domain features and promote diversity, we propose an instance-conditional feature augmentation strategy based on a textguided feature augmentation loss. 2) To maintain feature quality after augmenting, we introduce a pairwise regularizer to preserve augmented feature coherence within the CLIP feature space. 3) We propose to use stochastic text feature augmentation to reduce the modality gap and further facilitate the process of text-guided feature synthesis. Extensive experiments show LDFS superiority in improving CLIP generalization ability on unseen domains without collecting data from those domains. The code will be made publicly available.
Abstract:This paper reviews the NTIRE 2024 Challenge on Shortform UGC Video Quality Assessment (S-UGC VQA), where various excellent solutions are submitted and evaluated on the collected dataset KVQ from popular short-form video platform, i.e., Kuaishou/Kwai Platform. The KVQ database is divided into three parts, including 2926 videos for training, 420 videos for validation, and 854 videos for testing. The purpose is to build new benchmarks and advance the development of S-UGC VQA. The competition had 200 participants and 13 teams submitted valid solutions for the final testing phase. The proposed solutions achieved state-of-the-art performances for S-UGC VQA. The project can be found at https://github.com/lixinustc/KVQChallenge-CVPR-NTIRE2024.
Abstract:Human facial action units (AUs) are mutually related in a hierarchical manner, as not only they are associated with each other in both spatial and temporal domains but also AUs located in the same/close facial regions show stronger relationships than those of different facial regions. While none of existing approach thoroughly model such hierarchical inter-dependencies among AUs, this paper proposes to comprehensively model multi-scale AU-related dynamic and hierarchical spatio-temporal relationship among AUs for their occurrences recognition. Specifically, we first propose a novel multi-scale temporal differencing network with an adaptive weighting block to explicitly capture facial dynamics across frames at different spatial scales, which specifically considers the heterogeneity of range and magnitude in different AUs' activation. Then, a two-stage strategy is introduced to hierarchically model the relationship among AUs based on their spatial distribution (i.e., local and cross-region AU relationship modelling). Experimental results achieved on BP4D and DISFA show that our approach is the new state-of-the-art in the field of AU occurrence recognition. Our code is publicly available at https://github.com/CVI-SZU/MDHR.