UB
Abstract:Artificial intelligence has revolutionized the way we analyze sports videos, whether to understand the actions of games in long untrimmed videos or to anticipate the player's motion in future frames. Despite these efforts, little attention has been given to anticipating game actions before they occur. In this work, we introduce the task of action anticipation for football broadcast videos, which consists in predicting future actions in unobserved future frames, within a five- or ten-second anticipation window. To benchmark this task, we release a new dataset, namely the SoccerNet Ball Action Anticipation dataset, based on SoccerNet Ball Action Spotting. Additionally, we propose a Football Action ANticipation TRAnsformer (FAANTRA), a baseline method that adapts FUTR, a state-of-the-art action anticipation model, to predict ball-related actions. To evaluate action anticipation, we introduce new metrics, including mAP@$\delta$, which evaluates the temporal precision of predicted future actions, as well as mAP@$\infty$, which evaluates their occurrence within the anticipation window. We also conduct extensive ablation studies to examine the impact of various task settings, input configurations, and model architectures. Experimental results highlight both the feasibility and challenges of action anticipation in football videos, providing valuable insights into the design of predictive models for sports analytics. By forecasting actions before they unfold, our work will enable applications in automated broadcasting, tactical analysis, and player decision-making. Our dataset and code are publicly available at https://github.com/MohamadDalal/FAANTRA.
Abstract:Action Valuation (AV) has emerged as a key topic in Sports Analytics, offering valuable insights by assigning scores to individual actions based on their contribution to desired outcomes. Despite a few surveys addressing related concepts such as Player Valuation, there is no comprehensive review dedicated to an in-depth analysis of AV across different sports. In this survey, we introduce a taxonomy with nine dimensions related to the AV task, encompassing data, methodological approaches, evaluation techniques, and practical applications. Through this analysis, we aim to identify the essential characteristics of effective AV methods, highlight existing gaps in research, and propose future directions for advancing the field.
Abstract:In extended reality (XR), generating full-body motion of the users is important to understand their actions, drive their virtual avatars for social interaction, and convey a realistic sense of presence. While prior works focused on spatially sparse and always-on input signals from motion controllers, many XR applications opt for vision-based hand tracking for reduced user friction and better immersion. Compared to controllers, hand tracking signals are less accurate and can even be missing for an extended period of time. To handle such unreliable inputs, we present Rolling Prediction Model (RPM), an online and real-time approach that generates smooth full-body motion from temporally and spatially sparse input signals. Our model generates 1) accurate motion that matches the inputs (i.e., tracking mode) and 2) plausible motion when inputs are missing (i.e., synthesis mode). More importantly, RPM generates seamless transitions from tracking to synthesis, and vice versa. To demonstrate the practical importance of handling noisy and missing inputs, we present GORP, the first dataset of realistic sparse inputs from a commercial virtual reality (VR) headset with paired high quality body motion ground truth. GORP provides >14 hours of VR gameplay data from 28 people using motion controllers (spatially sparse) and hand tracking (spatially and temporally sparse). We benchmark RPM against the state of the art on both synthetic data and GORP to highlight how we can bridge the gap for real-world applications with a realistic dataset and by handling unreliable input signals. Our code, pretrained models, and GORP dataset are available in the project webpage.
Abstract:Generating human motion guided by conditions such as textual descriptions is challenging due to the need for datasets with pairs of high-quality motion and their corresponding conditions. The difficulty increases when aiming for finer control in the generation. To that end, prior works have proposed to combine several motion diffusion models pre-trained on datasets with different types of conditions, thus allowing control with multiple conditions. However, the proposed merging strategies overlook that the optimal way to combine the generation processes might depend on the particularities of each pre-trained generative model and also the specific textual descriptions. In this context, we introduce MixerMDM, the first learnable model composition technique for combining pre-trained text-conditioned human motion diffusion models. Unlike previous approaches, MixerMDM provides a dynamic mixing strategy that is trained in an adversarial fashion to learn to combine the denoising process of each model depending on the set of conditions driving the generation. By using MixerMDM to combine single- and multi-person motion diffusion models, we achieve fine-grained control on the dynamics of every person individually, and also on the overall interaction. Furthermore, we propose a new evaluation technique that, for the first time in this task, measures the interaction and individual quality by computing the alignment between the mixed generated motions and their conditions as well as the capabilities of MixerMDM to adapt the mixing throughout the denoising process depending on the motions to mix.
Abstract:Facial recognition systems in real-world scenarios are susceptible to both digital and physical attacks. Previous methods have attempted to achieve classification by learning a comprehensive feature space. However, these methods have not adequately accounted for the inherent characteristics of physical and digital attack data, particularly the large intra class variation in attacks and the small inter-class variation between live and fake faces. To address these limitations, we propose the Fine-Grained MoE with Class-Aware Regularization CLIP framework (FG-MoE-CLIP-CAR), incorporating key improvements at both the feature and loss levels. At the feature level, we employ a Soft Mixture of Experts (Soft MoE) architecture to leverage different experts for specialized feature processing. Additionally, we refine the Soft MoE to capture more subtle differences among various types of fake faces. At the loss level, we introduce two constraint modules: the Disentanglement Module (DM) and the Cluster Distillation Module (CDM). The DM enhances class separability by increasing the distance between the centers of live and fake face classes. However, center-to-center constraints alone are insufficient to ensure distinctive representations for individual features. Thus, we propose the CDM to further cluster features around their respective class centers while maintaining separation from other classes. Moreover, specific attacks that significantly deviate from common attack patterns are often overlooked. To address this issue, our distance calculation prioritizes more distant features. Experimental results on two unified physical-digital attack datasets demonstrate that the proposed method achieves state-of-the-art (SOTA) performance.
Abstract:Machine unlearning methods have become increasingly important for selective concept removal in large pre-trained models. While recent work has explored unlearning in Euclidean contrastive vision-language models, the effectiveness of concept removal in hyperbolic spaces remains unexplored. This paper investigates machine unlearning in hyperbolic contrastive learning by adapting Alignment Calibration to MERU, a model that embeds images and text in hyperbolic space to better capture semantic hierarchies. Through systematic experiments and ablation studies, we demonstrate that hyperbolic geometry offers distinct advantages for concept removal, achieving near perfect forgetting with reasonable performance on retained concepts, particularly when scaling to multiple concept removal. Our approach introduces hyperbolic-specific components including entailment calibration and norm regularization that leverage the unique properties of hyperbolic space. Comparative analysis with Euclidean models reveals fundamental differences in unlearning dynamics, with hyperbolic unlearning reorganizing the semantic hierarchy while Euclidean approaches merely disconnect cross-modal associations. These findings not only advance machine unlearning techniques but also provide insights into the geometric properties that influence concept representation and removal in multimodal models. Source code available at https://github.com/alex-pv01/HAC
Abstract:We introduce YOLO11-JDE, a fast and accurate multi-object tracking (MOT) solution that combines real-time object detection with self-supervised Re-Identification (Re-ID). By incorporating a dedicated Re-ID branch into YOLO11s, our model performs Joint Detection and Embedding (JDE), generating appearance features for each detection. The Re-ID branch is trained in a fully self-supervised setting while simultaneously training for detection, eliminating the need for costly identity-labeled datasets. The triplet loss, with hard positive and semi-hard negative mining strategies, is used for learning discriminative embeddings. Data association is enhanced with a custom tracking implementation that successfully integrates motion, appearance, and location cues. YOLO11-JDE achieves competitive results on MOT17 and MOT20 benchmarks, surpassing existing JDE methods in terms of FPS and using up to ten times fewer parameters. Thus, making our method a highly attractive solution for real-world applications.
Abstract:Accurate assessment of forest biodiversity is crucial for ecosystem management and conservation. While traditional field surveys provide high-quality assessments, they are labor-intensive and spatially limited. This study investigates whether deep learning-based fusion of close-range sensing data from 2D orthophotos (12.5 cm resolution) and 3D airborne laser scanning (ALS) point clouds (8 points/m^2) can enhance biodiversity assessment. We introduce the BioVista dataset, comprising 44.378 paired samples of orthophotos and ALS point clouds from temperate forests in Denmark, designed to explore multi-modal fusion approaches for biodiversity potential classification. Using deep neural networks (ResNet for orthophotos and PointVector for ALS point clouds), we investigate each data modality's ability to assess forest biodiversity potential, achieving mean accuracies of 69.4% and 72.8%, respectively. We explore two fusion approaches: a confidence-based ensemble method and a feature-level concatenation strategy, with the latter achieving a mean accuracy of 75.5%. Our results demonstrate that spectral information from orthophotos and structural information from ALS point clouds effectively complement each other in forest biodiversity assessment.
Abstract:We investigate the effectiveness of Explainable AI (XAI) in verifying Machine Unlearning (MU) within the context of harbor front monitoring, focusing on data privacy and regulatory compliance. With the increasing need to adhere to privacy legislation such as the General Data Protection Regulation (GDPR), traditional methods of retraining ML models for data deletions prove impractical due to their complexity and resource demands. MU offers a solution by enabling models to selectively forget specific learned patterns without full retraining. We explore various removal techniques, including data relabeling, and model perturbation. Then, we leverage attribution-based XAI to discuss the effects of unlearning on model performance. Our proof-of-concept introduces feature importance as an innovative verification step for MU, expanding beyond traditional metrics and demonstrating techniques' ability to reduce reliance on undesired patterns. Additionally, we propose two novel XAI-based metrics, Heatmap Coverage (HC) and Attention Shift (AS), to evaluate the effectiveness of these methods. This approach not only highlights how XAI can complement MU by providing effective verification, but also sets the stage for future research to enhance their joint integration.
Abstract:Image inpainting, the process of restoring missing or corrupted regions of an image by reconstructing pixel information, has recently seen considerable advancements through deep learning-based approaches. In this paper, we introduce a novel deep learning-based pre-processing methodology for image inpainting utilizing the Vision Transformer (ViT). Our approach involves replacing masked pixel values with those generated by the ViT, leveraging diverse visual patches within the attention matrix to capture discriminative spatial features. To the best of our knowledge, this is the first instance of such a pre-processing model being proposed for image inpainting tasks. Furthermore, we show that our methodology can be effectively applied using the pre-trained ViT model with pre-defined patch size. To evaluate the generalization capability of the proposed methodology, we provide experimental results comparing our approach with four standard models across four public datasets, demonstrating the efficacy of our pre-processing technique in enhancing inpainting performance.