Abstract:Recent advances in radiance field reconstruction, such as 3D Gaussian Splatting (3DGS), have achieved high-quality novel view synthesis and fast rendering by representing scenes with compositions of Gaussian primitives. However, 3D Gaussians present several limitations for scene reconstruction. Accurately capturing hard edges is challenging without significantly increasing the number of Gaussians, creating a large memory footprint. Moreover, they struggle to represent flat surfaces, as they are diffused in space. Without hand-crafted regularizers, they tend to disperse irregularly around the actual surface. To circumvent these issues, we introduce a novel method, named 3D Convex Splatting (3DCS), which leverages 3D smooth convexes as primitives for modeling geometrically-meaningful radiance fields from multi-view images. Smooth convex shapes offer greater flexibility than Gaussians, allowing for a better representation of 3D scenes with hard edges and dense volumes using fewer primitives. Powered by our efficient CUDA-based rasterizer, 3DCS achieves superior performance over 3DGS on benchmarks such as Mip-NeRF360, Tanks and Temples, and Deep Blending. Specifically, our method attains an improvement of up to 0.81 in PSNR and 0.026 in LPIPS compared to 3DGS while maintaining high rendering speeds and reducing the number of required primitives. Our results highlight the potential of 3D Convex Splatting to become the new standard for high-quality scene reconstruction and novel view synthesis. Project page: convexsplatting.github.io.
Abstract:The task of action spotting consists in both identifying actions and precisely localizing them in time with a single timestamp in long, untrimmed video streams. Automatically extracting those actions is crucial for many sports applications, including sports analytics to produce extended statistics on game actions, coaching to provide support to video analysts, or fan engagement to automatically overlay content in the broadcast when specific actions occur. However, before 2018, no large-scale datasets for action spotting in sports were publicly available, which impeded benchmarking action spotting methods. In response, our team built the largest dataset and the most comprehensive benchmarks for sports video understanding, under the umbrella of SoccerNet. Particularly, our dataset contains a subset specifically dedicated to action spotting, called SoccerNet Action Spotting, containing more than 550 complete broadcast games annotated with almost all types of actions that can occur in a football game. This dataset is tailored to develop methods for automatic spotting of actions of interest, including deep learning approaches, by providing a large amount of manually annotated actions. To engage with the scientific community, the SoccerNet initiative organizes yearly challenges, during which participants from all around the world compete to achieve state-of-the-art performances. Thanks to our dataset and challenges, more than 60 methods were developed or published over the past five years, improving on the first baselines and making action spotting a viable option for the sports industry. This paper traces the history of action spotting in sports, from the creation of the task back in 2018, to the role it plays today in research and the sports industry.
Abstract:The SoccerNet 2024 challenges represent the fourth annual video understanding challenges organized by the SoccerNet team. These challenges aim to advance research across multiple themes in football, including broadcast video understanding, field understanding, and player understanding. This year, the challenges encompass four vision-based tasks. (1) Ball Action Spotting, focusing on precisely localizing when and which soccer actions related to the ball occur, (2) Dense Video Captioning, focusing on describing the broadcast with natural language and anchored timestamps, (3) Multi-View Foul Recognition, a novel task focusing on analyzing multiple viewpoints of a potential foul incident to classify whether a foul occurred and assess its severity, (4) Game State Reconstruction, another novel task focusing on reconstructing the game state from broadcast videos onto a 2D top-view map of the field. Detailed information about the tasks, challenges, and leaderboards can be found at https://www.soccer-net.org, with baselines and development kits available at https://github.com/SoccerNet.
Abstract:Neural radiance fields (NeRFs) generally require many images with accurate poses for accurate novel view synthesis, which does not reflect realistic setups where views can be sparse and poses can be noisy. Previous solutions for learning NeRFs with sparse views and noisy poses only consider local geometry consistency with pairs of views. Closely following \textit{bundle adjustment} in Structure-from-Motion (SfM), we introduce TrackNeRF for more globally consistent geometry reconstruction and more accurate pose optimization. TrackNeRF introduces \textit{feature tracks}, \ie connected pixel trajectories across \textit{all} visible views that correspond to the \textit{same} 3D points. By enforcing reprojection consistency among feature tracks, TrackNeRF encourages holistic 3D consistency explicitly. Through extensive experiments, TrackNeRF sets a new benchmark in noisy and sparse view reconstruction. In particular, TrackNeRF shows significant improvements over the state-of-the-art BARF and SPARF by $\sim8$ and $\sim1$ in terms of PSNR on DTU under various sparse and noisy view setups. The code is available at \href{https://tracknerf.github.io/}.
Abstract:Over the past decade, the technology used by referees in football has improved substantially, enhancing the fairness and accuracy of decisions. This progress has culminated in the implementation of the Video Assistant Referee (VAR), an innovation that enables backstage referees to review incidents on the pitch from multiple points of view. However, the VAR is currently limited to professional leagues due to its expensive infrastructure and the lack of referees worldwide. In this paper, we present the semi-automated Video Assistant Referee System (VARS) that leverages the latest findings in multi-view video analysis. VARS sets a new state-of-the-art on the SoccerNet-MVFoul dataset, a multi-view video dataset of football fouls. Our VARS achieves a new state-of-the-art on the SoccerNet-MVFoul dataset by recognizing the type of foul in 50% of instances and the appropriate sanction in 46% of cases. Finally, we conducted a comparative study to investigate human performance in classifying fouls and their corresponding severity and compared these findings to our VARS. The results of our study highlight the potential of our VARS to reach human performance and support football refereeing across all levels of professional and amateur federations.
Abstract:We built our pipeline EgoLoc-v1, mainly inspired by EgoLoc. We propose a model ensemble strategy to improve the camera pose estimation part of the VQ3D task, which has been proven to be essential in previous work. The core idea is not only to do SfM for egocentric videos but also to do 2D-3D matching between existing 3D scans and 2D video frames. In this way, we have a hybrid SfM and camera relocalization pipeline, which can provide us with more camera poses, leading to higher QwP and overall success rate. Our method achieves the best performance regarding the most important metric, the overall success rate. We surpass previous state-of-the-art, the competitive EgoLoc, by $1.5\%$. The code is available at \url{https://github.com/Wayne-Mai/egoloc_v1}.
Abstract:Slow-motion replays provide a thrilling perspective on pivotal moments within sports games, offering a fresh and captivating visual experience. However, capturing slow-motion footage typically demands high-tech, expensive cameras and infrastructures. Deep learning Video Frame Interpolation (VFI) techniques have emerged as a promising avenue, capable of generating high-speed footage from regular camera feeds. Moreover, the utilization of event-based cameras has recently gathered attention as they provide valuable motion information between frames, further enhancing the VFI performances. In this work, we present a first investigation of event-based VFI models for generating sports slow-motion videos. Particularly, we design and implement a bi-camera recording setup, including an RGB and an event-based camera to capture sports videos, to temporally align and spatially register both cameras. Our experimental validation demonstrates that TimeLens, an off-the-shelf event-based VFI model, can effectively generate slow-motion footage for sports videos. This first investigation underscores the practical utility of event-based cameras in producing sports slow-motion content and lays the groundwork for future research endeavors in this domain.
Abstract:Action spotting is crucial in sports analytics as it enables the precise identification and categorization of pivotal moments in sports matches, providing insights that are essential for performance analysis and tactical decision-making. The fragmentation of existing methodologies, however, impedes the progression of sports analytics, necessitating a unified codebase to support the development and deployment of action spotting for video analysis. In this work, we introduce OSL-ActionSpotting, a Python library that unifies different action spotting algorithms to streamline research and applications in sports video analytics. OSL-ActionSpotting encapsulates various state-of-the-art techniques into a singular, user-friendly framework, offering standardized processes for action spotting and analysis across multiple datasets. We successfully integrated three cornerstone action spotting methods into OSL-ActionSpotting, achieving performance metrics that match those of the original, disparate codebases. This unification within a single library preserves the effectiveness of each method and enhances usability and accessibility for researchers and practitioners in sports analytics. By bridging the gaps between various action spotting techniques, OSL-ActionSpotting significantly contributes to the field of sports video analysis, fostering enhanced analytical capabilities and collaborative research opportunities. The scalable and modularized design of the library ensures its long-term relevance and adaptability to future technological advancements in the domain.
Abstract:The application of Automatic Speech Recognition (ASR) technology in soccer offers numerous opportunities for sports analytics. Specifically, extracting audio commentaries with ASR provides valuable insights into the events of the game, and opens the door to several downstream applications such as automatic highlight generation. This paper presents SoccerNet-Echoes, an augmentation of the SoccerNet dataset with automatically generated transcriptions of audio commentaries from soccer game broadcasts, enhancing video content with rich layers of textual information derived from the game audio using ASR. These textual commentaries, generated using the Whisper model and translated with Google Translate, extend the usefulness of the SoccerNet dataset in diverse applications such as enhanced action spotting, automatic caption generation, and game summarization. By incorporating textual data alongside visual and auditory content, SoccerNet-Echoes aims to serve as a comprehensive resource for the development of algorithms specialized in capturing the dynamics of soccer games. We detail the methods involved in the curation of this dataset and the integration of ASR. We also highlight the implications of a multimodal approach in sports analytics, and how the enriched dataset can support diverse applications, thus broadening the scope of research and development in the field of sports analytics.
Abstract:Tracking and identifying athletes on the pitch holds a central role in collecting essential insights from the game, such as estimating the total distance covered by players or understanding team tactics. This tracking and identification process is crucial for reconstructing the game state, defined by the athletes' positions and identities on a 2D top-view of the pitch, (i.e. a minimap). However, reconstructing the game state from videos captured by a single camera is challenging. It requires understanding the position of the athletes and the viewpoint of the camera to localize and identify players within the field. In this work, we formalize the task of Game State Reconstruction and introduce SoccerNet-GSR, a novel Game State Reconstruction dataset focusing on football videos. SoccerNet-GSR is composed of 200 video sequences of 30 seconds, annotated with 9.37 million line points for pitch localization and camera calibration, as well as over 2.36 million athlete positions on the pitch with their respective role, team, and jersey number. Furthermore, we introduce GS-HOTA, a novel metric to evaluate game state reconstruction methods. Finally, we propose and release an end-to-end baseline for game state reconstruction, bootstrapping the research on this task. Our experiments show that GSR is a challenging novel task, which opens the field for future research. Our dataset and codebase are publicly available at https://github.com/SoccerNet/sn-gamestate.