Abstract:In the rapidly evolving field of sports analytics, the automation of targeted video processing is a pivotal advancement. We propose PlayerTV, an innovative framework which harnesses state-of-the-art AI technologies for automatic player tracking and identification in soccer videos. By integrating object detection and tracking, Optical Character Recognition (OCR), and color analysis, PlayerTV facilitates the generation of player-specific highlight clips from extensive game footage, significantly reducing the manual labor traditionally associated with such tasks. Preliminary results from the evaluation of our core pipeline, tested on a dataset from the Norwegian Eliteserien league, indicate that PlayerTV can accurately and efficiently identify teams and players, and our interactive Graphical User Interface (GUI) serves as a user-friendly application wrapping this functionality for streamlined use.
Abstract:The application of Automatic Speech Recognition (ASR) technology in soccer offers numerous opportunities for sports analytics. Specifically, extracting audio commentaries with ASR provides valuable insights into the events of the game, and opens the door to several downstream applications such as automatic highlight generation. This paper presents SoccerNet-Echoes, an augmentation of the SoccerNet dataset with automatically generated transcriptions of audio commentaries from soccer game broadcasts, enhancing video content with rich layers of textual information derived from the game audio using ASR. These textual commentaries, generated using the Whisper model and translated with Google Translate, extend the usefulness of the SoccerNet dataset in diverse applications such as enhanced action spotting, automatic caption generation, and game summarization. By incorporating textual data alongside visual and auditory content, SoccerNet-Echoes aims to serve as a comprehensive resource for the development of algorithms specialized in capturing the dynamics of soccer games. We detail the methods involved in the curation of this dataset and the integration of ASR. We also highlight the implications of a multimodal approach in sports analytics, and how the enriched dataset can support diverse applications, thus broadening the scope of research and development in the field of sports analytics.