Abstract:Domain generalization methods aim to learn transferable knowledge from source domains that can generalize well to unseen target domains. Recent studies show that neural networks frequently suffer from a simplicity-biased learning behavior which leads to over-reliance on specific frequency sets, namely as frequency shortcuts, instead of semantic information, resulting in poor generalization performance. Despite previous data augmentation techniques successfully enhancing generalization performances, they intend to apply more frequency shortcuts, thereby causing hallucinations of generalization improvement. In this paper, we aim to prevent such learning behavior of applying frequency shortcuts from a data-driven perspective. Given the theoretical justification of models' biased learning behavior on different spatial frequency components, which is based on the dataset frequency properties, we argue that the learning behavior on various frequency components could be manipulated by changing the dataset statistical structure in the Fourier domain. Intuitively, as frequency shortcuts are hidden in the dominant and highly dependent frequencies of dataset structure, dynamically perturbating the over-reliance frequency components could prevent the application of frequency shortcuts. To this end, we propose two effective data augmentation modules designed to collaboratively and adaptively adjust the frequency characteristic of the dataset, aiming to dynamically influence the learning behavior of the model and ultimately serving as a strategy to mitigate shortcut learning. Code is available at AdvFrequency (https://github.com/C0notSilly/AdvFrequency).
Abstract:Facial expression datasets remain limited in scale due to privacy concerns, the subjectivity of annotations, and the labor-intensive nature of data collection. This limitation poses a significant challenge for developing modern deep learning-based facial expression analysis models, particularly foundation models, that rely on large-scale data for optimal performance. To tackle the overarching and complex challenge, we introduce SynFER (Synthesis of Facial Expressions with Refined Control), a novel framework for synthesizing facial expression image data based on high-level textual descriptions as well as more fine-grained and precise control through facial action units. To ensure the quality and reliability of the synthetic data, we propose a semantic guidance technique to steer the generation process and a pseudo-label generator to help rectify the facial expression labels for the synthetic images. To demonstrate the generation fidelity and the effectiveness of the synthetic data from SynFER, we conduct extensive experiments on representation learning using both synthetic data and real-world data. Experiment results validate the efficacy of the proposed approach and the synthetic data. Notably, our approach achieves a 67.23% classification accuracy on AffectNet when training solely with synthetic data equivalent to the AffectNet training set size, which increases to 69.84% when scaling up to five times the original size. Our code will be made publicly available.
Abstract:Privacy issue is a main concern in developing face recognition techniques. Although synthetic face images can partially mitigate potential legal risks while maintaining effective face recognition (FR) performance, FR models trained by face images synthesized by existing generative approaches frequently suffer from performance degradation problems due to the insufficient discriminative quality of these synthesized samples. In this paper, we systematically investigate what contributes to solid face recognition model training, and reveal that face images with certain degree of similarities to their identity centers show great effectiveness in the performance of trained FR models. Inspired by this, we propose a novel diffusion-based approach (namely Center-based Semi-hard Synthetic Face Generation (CemiFace)) which produces facial samples with various levels of similarity to the subject center, thus allowing to generate face datasets containing effective discriminative samples for training face recognition. Experimental results show that with a modest degree of similarity, training on the generated dataset can produce competitive performance compared to previous generation methods.
Abstract:The objective of the Multiple Appropriate Facial Reaction Generation (MAFRG) task is to produce contextually appropriate and diverse listener facial behavioural responses based on the multimodal behavioural data of the conversational partner (i.e., the speaker). Current methodologies typically assume continuous availability of speech and facial modality data, neglecting real-world scenarios where these data may be intermittently unavailable, which often results in model failures. Furthermore, despite utilising advanced deep learning models to extract information from the speaker's multimodal inputs, these models fail to adequately leverage the speaker's emotional context, which is vital for eliciting appropriate facial reactions from human listeners. To address these limitations, we propose an Emotion-aware Modality Compensatory (EMC) framework. This versatile solution can be seamlessly integrated into existing models, thereby preserving their advantages while significantly enhancing performance and robustness in scenarios with missing modalities. Our framework ensures resilience when faced with missing modality data through the Compensatory Modality Alignment (CMA) module. It also generates more appropriate emotion-aware reactions via the Emotion-aware Attention (EA) module, which incorporates the speaker's emotional information throughout the entire encoding and decoding process. Experimental results demonstrate that our framework improves the appropriateness metric FRCorr by an average of 57.2\% compared to the original model structure. In scenarios where speech modality data is missing, the performance of appropriate generation shows an improvement, and when facial data is missing, it only exhibits minimal degradation.
Abstract:Remote sensing images usually characterized by complex backgrounds, scale and orientation variations, and large intra-class variance. General semantic segmentation methods usually fail to fully investigate the above issues, and thus their performances on remote sensing image segmentation are limited. In this paper, we propose our LOGCAN++, a semantic segmentation model customized for remote sensing images, which is made up of a Global Class Awareness (GCA) module and several Local Class Awareness (LCA) modules. The GCA module captures global representations for class-level context modeling to reduce the interference of background noise. The LCA module generates local class representations as intermediate perceptual elements to indirectly associate pixels with the global class representations, targeting at dealing with the large intra-class variance problem. In particular, we introduce affine transformations in the LCA module for adaptive extraction of local class representations to effectively tolerate scale and orientation variations in remotely sensed images. Extensive experiments on three benchmark datasets show that our LOGCAN++ outperforms current mainstream general and remote sensing semantic segmentation methods and achieves a better trade-off between speed and accuracy. Code is available at https://github.com/xwmaxwma/rssegmentation.
Abstract:Existing Graph Neural Networks (GNNs) are limited to process graphs each of whose vertices is represented by a vector or a single value, limited their representing capability to describe complex objects. In this paper, we propose the first GNN (called Graph in Graph Neural (GIG) Network) which can process graph-style data (called GIG sample) whose vertices are further represented by graphs. Given a set of graphs or a data sample whose components can be represented by a set of graphs (called multi-graph data sample), our GIG network starts with a GIG sample generation (GSG) module which encodes the input as a \textbf{GIG sample}, where each GIG vertex includes a graph. Then, a set of GIG hidden layers are stacked, with each consisting of: (1) a GIG vertex-level updating (GVU) module that individually updates the graph in every GIG vertex based on its internal information; and (2) a global-level GIG sample updating (GGU) module that updates graphs in all GIG vertices based on their relationships, making the updated GIG vertices become global context-aware. This way, both internal cues within the graph contained in each GIG vertex and the relationships among GIG vertices could be utilized for down-stream tasks. Experimental results demonstrate that our GIG network generalizes well for not only various generic graph analysis tasks but also real-world multi-graph data analysis (e.g., human skeleton video-based action recognition), which achieved the new state-of-the-art results on 13 out of 14 evaluated datasets. Our code is publicly available at https://github.com/wangjs96/Graph-in-Graph-Neural-Network.
Abstract:Remote sensing images usually characterized by complex backgrounds, scale and orientation variations, and large intra-class variance. General semantic segmentation methods usually fail to fully investigate the above issues, and thus their performances on remote sensing image segmentation are limited. In this paper, we propose our LOGCAN++, a semantic segmentation model customized for remote sensing images, which is made up of a Global Class Awareness (GCA) module and several Local Class Awareness (LCA) modules. The GCA module captures global representations for class-level context modeling to reduce the interference of background noise. The LCA module generates local class representations as intermediate perceptual elements to indirectly associate pixels with the global class representations, targeting at dealing with the large intra-class variance problem. In particular, we introduce affine transformations in the LCA module for adaptive extraction of local class representations to effectively tolerate scale and orientation variations in remotely sensed images. Extensive experiments on three benchmark datasets show that our LOGCAN++ outperforms current mainstream general and remote sensing semantic segmentation methods and achieves a better trade-off between speed and accuracy. Code is available at https://github.com/xwmaxwma/rssegmentation.
Abstract:Remote sensing change detection aims to compare two or more images recorded for the same area but taken at different time stamps to quantitatively and qualitatively assess changes in geographical entities and environmental factors. Mainstream models usually built on pixel-by-pixel change detection paradigms, which cannot tolerate the diversity of changes due to complex scenes and variation in imaging conditions. To address this shortcoming, this paper rethinks the change detection with the mask view, and further proposes the corresponding: 1) meta-architecture CDMask and 2) instance network CDMaskFormer. Components of CDMask include Siamese backbone, change extractor, pixel decoder, transformer decoder and normalized detector, which ensures the proper functioning of the mask detection paradigm. Since the change query can be adaptively updated based on the bi-temporal feature content, the proposed CDMask can adapt to different latent data distributions, thus accurately identifying regions of interest changes in complex scenarios. Consequently, we further propose the instance network CDMaskFormer customized for the change detection task, which includes: (i) a Spatial-temporal convolutional attention-based instantiated change extractor to capture spatio-temporal context simultaneously with lightweight operations; and (ii) a scene-guided axial attention-instantiated transformer decoder to extract more spatial details. State-of-the-art performance of CDMaskFormer is achieved on five benchmark datasets with a satisfactory efficiency-accuracy trade-off. Code is available at https://github.com/xwmaxwma/rschange.
Abstract:Human facial action units (AUs) are mutually related in a hierarchical manner, as not only they are associated with each other in both spatial and temporal domains but also AUs located in the same/close facial regions show stronger relationships than those of different facial regions. While none of existing approach thoroughly model such hierarchical inter-dependencies among AUs, this paper proposes to comprehensively model multi-scale AU-related dynamic and hierarchical spatio-temporal relationship among AUs for their occurrences recognition. Specifically, we first propose a novel multi-scale temporal differencing network with an adaptive weighting block to explicitly capture facial dynamics across frames at different spatial scales, which specifically considers the heterogeneity of range and magnitude in different AUs' activation. Then, a two-stage strategy is introduced to hierarchically model the relationship among AUs based on their spatial distribution (i.e., local and cross-region AU relationship modelling). Experimental results achieved on BP4D and DISFA show that our approach is the new state-of-the-art in the field of AU occurrence recognition. Our code is publicly available at https://github.com/CVI-SZU/MDHR.
Abstract:Adversarial examples generated by a surrogate model typically exhibit limited transferability to unknown target systems. To address this problem, many transferability enhancement approaches (e.g., input transformation and model augmentation) have been proposed. However, they show poor performances in attacking systems having different model genera from the surrogate model. In this paper, we propose a novel and generic attacking strategy, called Deformation-Constrained Warping Attack (DeCoWA), that can be effectively applied to cross model genus attack. Specifically, DeCoWA firstly augments input examples via an elastic deformation, namely Deformation-Constrained Warping (DeCoW), to obtain rich local details of the augmented input. To avoid severe distortion of global semantics led by random deformation, DeCoW further constrains the strength and direction of the warping transformation by a novel adaptive control strategy. Extensive experiments demonstrate that the transferable examples crafted by our DeCoWA on CNN surrogates can significantly hinder the performance of Transformers (and vice versa) on various tasks, including image classification, video action recognition, and audio recognition. Code is made available at https://github.com/LinQinLiang/DeCoWA.