Abstract:The SoccerNet 2024 challenges represent the fourth annual video understanding challenges organized by the SoccerNet team. These challenges aim to advance research across multiple themes in football, including broadcast video understanding, field understanding, and player understanding. This year, the challenges encompass four vision-based tasks. (1) Ball Action Spotting, focusing on precisely localizing when and which soccer actions related to the ball occur, (2) Dense Video Captioning, focusing on describing the broadcast with natural language and anchored timestamps, (3) Multi-View Foul Recognition, a novel task focusing on analyzing multiple viewpoints of a potential foul incident to classify whether a foul occurred and assess its severity, (4) Game State Reconstruction, another novel task focusing on reconstructing the game state from broadcast videos onto a 2D top-view map of the field. Detailed information about the tasks, challenges, and leaderboards can be found at https://www.soccer-net.org, with baselines and development kits available at https://github.com/SoccerNet.
Abstract:Chronic wounds pose an ongoing health concern globally, largely due to the prevalence of conditions such as diabetes and leprosy's disease. The standard method of monitoring these wounds involves visual inspection by healthcare professionals, a practice that could present challenges for patients in remote areas with inadequate transportation and healthcare infrastructure. This has led to the development of algorithms designed for the analysis and follow-up of wound images, which perform image-processing tasks such as classification, detection, and segmentation. However, the effectiveness of these algorithms heavily depends on the availability of comprehensive and varied wound image data, which is usually scarce. This paper introduces the CO2Wounds-V2 dataset, an extended collection of RGB wound images from leprosy patients with their corresponding semantic segmentation annotations, aiming to enhance the development and testing of image-processing algorithms in the medical field.
Abstract:Data augmentation is classically used to improve the overall performance of deep learning models. It is, however, challenging in the case of medical applications, and in particular for multiparametric datasets. For example, traditional geometric transformations used in several applications to generate synthetic images can modify in a non-realistic manner the patients' anatomy. Therefore, dedicated image generation techniques are necessary in the medical field to, for example, mimic a given pathology realistically. This paper introduces a new data augmentation architecture that generates synthetic multiparametric (T1 arterial, T1 portal, and T2) magnetic resonance images (MRI) of massive macrotrabecular subtype hepatocellular carcinoma with their corresponding tumor masks through a generative deep learning approach. The proposed architecture creates liver tumor masks and abdominal edges used as input in a Pix2Pix network for synthetic data creation. The method's efficiency is demonstrated by training it on a limited multiparametric dataset of MRI triplets from $89$ patients with liver lesions to generate $1,000$ synthetic triplets and their corresponding liver tumor masks. The resulting Frechet Inception Distance score was $86.55$. The proposed approach was among the winners of the 2021 data augmentation challenge organized by the French Society of Radiology.
Abstract:In recent years, fast technological advancements have led to the development of high-quality software and hardware, revolutionizing various industries such as the economy, health, industry, and agriculture. Specifically, applying information and communication technology (ICT) tools and the Internet of Things (IoT) in agriculture has improved productivity through sustainable food cultivation and environment preservation via efficient use of land and knowledge. However, limited access, high costs, and lack of training have created a considerable gap between farmers and ICT tools in some countries, e.g., Colombia. To address these challenges, we present AgroTIC, a smartphone-based application for agriculture that bridges the gap between farmers, agronomists, and merchants via ubiquitous technology and low-cost smartphones. AgroTIC enables farmers to monitor their crop health with the assistance of agronomists, image processing, and deep learning. Furthermore, when farmers are ready to market their agricultural products, AgroTIC provides a platform to connect them with merchants. We present a case study of the AgroTIC app among citrus fruit farmers from the Santander department in Colombia. Our study included over 200 farmers from more than 130 farms, and AgroTIC positively impacted their crop quality and production. The AgroTIC app was downloaded over 120 times during the study, and more than 170 farmers, agronomists, and merchants actively used the application.