Abstract:Current PEFT methods for LLMs can achieve either high quality, efficient training, or scalable serving, but not all three simultaneously. To address this limitation, we investigate sparse fine-tuning and observe a remarkable improvement in generalization ability. Utilizing this key insight, we propose a family of Structured Sparse Fine-Tuning (S$^{2}$FT) methods for LLMs, which concurrently achieve state-of-the-art fine-tuning performance, training efficiency, and inference scalability. S$^{2}$FT accomplishes this by "selecting sparsely and computing densely". It selects a few heads and channels in the MHA and FFN modules for each Transformer block, respectively. Next, it co-permutes weight matrices on both sides of the coupled structures in LLMs to connect the selected components in each layer into a dense submatrix. Finally, S$^{2}$FT performs in-place gradient updates on all submatrices. Through theoretical analysis and empirical results, our method prevents overfitting and forgetting, delivers SOTA performance on both commonsense and arithmetic reasoning with 4.6% and 1.3% average improvements compared to LoRA, and surpasses full FT by 11.5% when generalizing to various domains after instruction tuning. Using our partial backpropagation algorithm, S$^{2}$FT saves training memory up to 3$\times$ and improves latency by 1.5-2.7$\times$ compared to full FT, while delivering an average 10% improvement over LoRA on both metrics. We further demonstrate that the weight updates in S$^{2}$FT can be decoupled into adapters, enabling effective fusion, fast switch, and efficient parallelism for serving multiple fine-tuned models.
Abstract:Birds-Eye-View (BEV) segmentation aims to establish a spatial mapping from the perspective view to the top view and estimate the semantic maps from monocular images. Recent studies have encountered difficulties in view transformation due to the disruption of BEV-agnostic features in image space. To tackle this issue, we propose a novel FocusBEV framework consisting of $(i)$ a self-calibrated cross view transformation module to suppress the BEV-agnostic image areas and focus on the BEV-relevant areas in the view transformation stage, $(ii)$ a plug-and-play ego-motion-based temporal fusion module to exploit the spatiotemporal structure consistency in BEV space with a memory bank, and $(iii)$ an occupancy-agnostic IoU loss to mitigate both semantic and positional uncertainties. Experimental evidence demonstrates that our approach achieves new state-of-the-art on two popular benchmarks,\ie, 29.2\% mIoU on nuScenes and 35.2\% mIoU on Argoverse.
Abstract:In recent years, the rapid development of large language models (LLMs) has achieved remarkable performance across various tasks. However, research indicates that LLMs are vulnerable to jailbreak attacks, where adversaries can induce the generation of harmful content through meticulously crafted prompts. This vulnerability poses significant challenges to the secure use and promotion of LLMs. Existing defense methods offer protection from different perspectives but often suffer from insufficient effectiveness or a significant impact on the model's capabilities. In this paper, we propose a plug-and-play and easy-to-deploy jailbreak defense framework, namely Prefix Guidance (PG), which guides the model to identify harmful prompts by directly setting the first few tokens of the model's output. This approach combines the model's inherent security capabilities with an external classifier to defend against jailbreak attacks. We demonstrate the effectiveness of PG across three models and five attack methods. Compared to baselines, our approach is generally more effective on average. Additionally, results on the Just-Eval benchmark further confirm PG's superiority to preserve the model's performance. our code is available at https://github.com/weiyezhimeng/Prefix-Guidance.
Abstract:We introduce Mini-Sequence Transformer (MsT), a simple and effective methodology for highly efficient and accurate LLM training with extremely long sequences. MsT partitions input sequences and iteratively processes mini-sequences to reduce intermediate memory usage. Integrated with activation recomputation, it enables significant memory savings in both forward and backward passes. In experiments with the Llama3-8B model, with MsT, we measure no degradation in throughput or convergence even with 12x longer sequences than standard implementations due to our careful memory optimizations. MsT is fully general, implementation-agnostic, and requires minimal code changes to integrate with existing LLM training frameworks.
Abstract:Modern Large Language Models (LLMs) are composed of matrices with billions of elements, making their storage and processing quite demanding in terms of computational resources and memory usage. Being significantly large, such matrices can often be expressed in low-rank format with potential to relax resource requirements. Unlike prior works which focus on developing novel matrix decomposition algorithms, in this work we first study the emergence of low-rank structures across matrices within different layers of LLMs and establish a consequential relationship between the gradient dynamics and emerging low-rank expressiveness of matrices. Our findings reveal that different layers exhibit varying levels of converged low-rank structure, necessitating a non-uniform rank reduction across them to minimize performance drop due to compression. In view of that, we present Weight Low-Rank Projection (WeLore) that unifies weight compression and memory-efficient fine-tuning as ONE, in a data-agnostic and one-shot way. WeLore capitalizes the heavy-tail distribution of singular values to identify a suitable rank reduction ratio for matrices within LLMs. Going beyond only as a compression technique, WeLore categorizes weight matrices into Low-rank Components (LRCs) and Non-Low-rank Components (N-LRCs) based on their ability to express themselves as low-rank. Our gradient perspective and extensive experiments illustrate that LRCs tend to have better finetuning capabilities and can closely mimic (sometimes outperform) the training loss trajectory and performance of full-finetuning with notable memory and compute footprint reduction. For example, finetuning a 50\% compressed LLaMa-2 7B model using only a fraction of parameters in LRCs (WeLore) can outperform its full finetuning with ~3x better throughput and ~0.6x GPU requirement. Our codes are available at \url{https://github.com/VITA-Group/welore}
Abstract:Training Large Language Models (LLMs) is memory-intensive due to the large number of parameters and associated optimization states. GaLore, a recent method, reduces memory usage by projecting weight gradients into a low-rank subspace without compromising performance. However, GaLore relies on time-consuming Singular Value Decomposition (SVD) operations to identify the subspace, and the frequent subspace updates lead to significant training time overhead. Moreover, GaLore offers minimal improvements in accuracy and efficiency compared to LoRA in more accessible fine-tuning scenarios. To address these limitations, we introduce Q-Galore, a novel approach that substantially reduces memory usage by combining quantization and low-rank projection, surpassing the benefits of GaLore. Our method is based on two key observations: (i) the gradient subspace exhibits diverse properties, with some layers converging early in training while others are subject to frequent changes; (ii) the projection matrices are highly resilient to low-bit quantization. Leveraging these insights, Q-GaLore adaptively updates the gradient subspace based on its convergence statistics, achieving comparable performance while significantly reducing the number of SVD operations. We maintain the projection matrices in INT4 format and weights in INT8 format, incorporating stochastic rounding to capture accumulated gradient information. This approach enables a high-precision training trajectory using only low-precision weights. We demonstrate that Q-GaLore achieves highly competitive performance with exceptional memory efficiency. At pre-training, Q-GaLore facilitates training a LLaMA-7B model from scratch on a single NVIDIA RTX 4060 Ti with only 16 GB memory. At fine-tuning, it reduces memory consumption by up to 50% compared to LoRA and GaLore, while consistently outperforming QLoRA at the same memory cost.
Abstract:Training Large Language Models (LLMs) presents significant memory challenges, predominantly due to the growing size of weights and optimizer states. Common memory-reduction approaches, such as low-rank adaptation (LoRA), add a trainable low-rank matrix to the frozen pre-trained weight in each layer, reducing trainable parameters and optimizer states. However, such approaches typically underperform training with full-rank weights in both pre-training and fine-tuning stages since they limit the parameter search to a low-rank subspace and alter the training dynamics, and further, may require full-rank warm start. In this work, we propose Gradient Low-Rank Projection (GaLore), a training strategy that allows full-parameter learning but is more memory-efficient than common low-rank adaptation methods such as LoRA. Our approach reduces memory usage by up to 65.5% in optimizer states while maintaining both efficiency and performance for pre-training on LLaMA 1B and 7B architectures with C4 dataset with up to 19.7B tokens, and on fine-tuning RoBERTa on GLUE tasks. Our 8-bit GaLore further reduces optimizer memory by up to 82.5% and total training memory by 63.3%, compared to a BF16 baseline. Notably, we demonstrate, for the first time, the feasibility of pre-training a 7B model on consumer GPUs with 24GB memory (e.g., NVIDIA RTX 4090) without model parallel, checkpointing, or offloading strategies.
Abstract:The theory of greedy low-rank learning (GLRL) aims to explain the impressive generalization capabilities of deep learning. It proves that stochastic gradient-based training implicitly regularizes neural networks towards low-rank solutions through a gradual increase of the rank during training. However, there is a gap between theory and practice since GLRL requires an infinitesimal initialization of the weights, which is not practical due to the fact that it is a saddle point. In this work, we remove the assumption of infinitesimal initialization by focusing on cumulative weight updates. We prove the cumulative weight updates follow an incremental low-rank trajectory for arbitrary orthogonal initialization of weights in a three-layer linear network. Empirically, we demonstrate that our theory holds on a broad range of neural networks (e.g., transformers) and standard training algorithms (e.g., SGD, Adam). However, existing training algorithms do not exploit the low-rank property to improve computational efficiency as the networks are not parameterized in low-rank. To remedy this, we design a new training algorithm Incremental Low-Rank Learning (InRank), which explicitly expresses cumulative weight updates as low-rank matrices while incrementally augmenting their ranks during training. We evaluate InRank on GPT-2, and our results indicate that InRank achieves comparable prediction performance as the full-rank counterpart while requiring at most 33% of the total ranks throughout training. We also propose an efficient version of InRank that achieves a reduction of 20% in total training time and 37% in memory usage when training GPT-medium on WikiText-103 from scratch.
Abstract:Robot teleoperation has been studied for the past 70 years and is relevant in many contexts, such as in the handling of hazardous materials and telesurgery. The COVID19 pandemic has rekindled interest in this topic, but the existing robotic education kits fail short of being suitable for teleoperated robotic manipulator learning. In addition, the global restrictions of motion motivated large investments in online/hybrid education. In this work, a newly developed robotics education kit and its ecosystem are presented which is used as the backbone of an online/hybrid course in teleoperated robots. The students are assembled into teams, design, fabricate, and control a master device and gripper, and compete in a teleoperation challenge. The kit is low cost (< 100USD), which allows higher-learning institutions to provide one kit per student and they can learn in a risk-free environment. As of now, 53 such kits have been assembled and sent to course participants in eight countries. As major success stories, we show an example of gripper and master designed for the proposed course. In addition, we show a teleoperated task between Japan and Bangladesh executed by course participants. Design files, videos, and more information available at https://mmmarinho.github.io/UMIRobot/
Abstract:Recently, neural networks have proven their impressive ability to solve partial differential equations (PDEs). Among them, Fourier neural operator (FNO) has shown success in learning solution operators for highly non-linear problems such as turbulence flow. FNO is discretization-invariant, where it can be trained on low-resolution data and generalizes to problems with high-resolution. This property is related to the low-pass filters in FNO, where only a limited number of frequency modes are selected to propagate information. However, it is still a challenge to select an appropriate number of frequency modes and training resolution for different PDEs. Too few frequency modes and low-resolution data hurt generalization, while too many frequency modes and high-resolution data are computationally expensive and lead to over-fitting. To this end, we propose Incremental Fourier Neural Operator (IFNO), which augments both the frequency modes and data resolution incrementally during training. We show that IFNO achieves better generalization (around 15% reduction on testing L2 loss) while reducing the computational cost by 35%, compared to the standard FNO. In addition, we observe that IFNO follows the behavior of implicit regularization in FNO, which explains its excellent generalization ability.