Shanghai Jiaotong University
Abstract:We present HadaCore, a modified Fast Walsh-Hadamard Transform (FWHT) algorithm optimized for the Tensor Cores present in modern GPU hardware. HadaCore follows the recursive structure of the original FWHT algorithm, achieving the same asymptotic runtime complexity but leveraging a hardware-aware work decomposition that benefits from Tensor Core acceleration. This reduces bottlenecks from compute and data exchange. On Nvidia A100 and H100 GPUs, HadaCore achieves speedups of 1.1-1.4x and 1.0-1.3x, with a peak gain of 3.5x and 3.6x respectively, when compared to the existing state-of-the-art implementation of the original algorithm. We also show that when using FP16 or BF16, our implementation is numerically accurate, enabling comparable accuracy on MMLU benchmarks when used in an end-to-end Llama3 inference run with quantized (FP8) attention.
Abstract:Obtaining reliable position estimation is fundamental for unmanned aerial vehicles during mission execution, especially in harsh environments. But environmental interference and abrupt changes usually degrade measurement reliability, leading to estimation divergence. To address this, existing works explore adaptive adjustment of sensor confidence. Unfortunately, existing methods typically lack synchronous evaluation of estimation precision, thereby rendering adjustments sensitive to abnormal data and susceptible to divergence. To tackle this issue, we propose a novel ternary-channel adaptive evolving estimator equipped with an online error monitor, where the ternary channels, states, noise covariance matrices and especially aerial drag, evolve simultaneously with environment. Firstly, an augmented filter is employed to pre-processes multidimensional data, followed by an inverse-Wishart smoother utilized to obtain posterior states and covariance matrices. Error propagation relation during estimation is analysed and hence an indicator is devised for online monitoring estimation errors. Under this premise, several restrictions are applied to suppress potential divergence led by interference. Additionally, considering motion dynamics, aerial drag matrix is reformulated based on updated states and covariance matrices. Finally, the observability, numerical sensitivity and arithmetic complexity of the proposed estimator are mathematically analyzed. Extensive experiments are conducted in both common and harsh environments (with average RMSE 0.17m and 0.39m respectively) to verify adaptability of algorithm and effectiveness of restriction design, which shows our method significantly outperforms the state-of-the-art.
Abstract:Tool-augmented large language models (LLMs) leverage tools, often in the form of APIs, to enhance their reasoning capabilities on complex tasks, thus taking on the role of intelligent agents interacting with the real world. The recently introduced ToolLLaMA model by Qin et al. [2024] utilizes the depth-first search-based decision tree (DFSDT) method for reasoning with $16000+$ real-world APIs, which effectively improves the planning and inferencing performance of tool-augmented LLMs compared to traditional chain reasoning approaches. However, their approach only employs successful paths from decision trees (also called inference trees) for supervised fine-tuning (SFT) during training, which does not fully exploit the advantages of the tree of thought. In this study, we propose an inference trajectory optimization framework based on the preference data extracted from decision trees to address this limitation. We first introduce a novel method for constructing preference data from the tree of thought, capitalizing on the failed explorations previously overlooked in the trees. Specifically, we generate an effective step-wise preference dataset, named ToolPreference, for tool use based on the ToolBench dataset. In the subsequent training phase, we first fine-tune the LLM with tool-usage expert trajectories and then use these step-wise preference pairs for direct preference optimization (DPO) to update the policy of the LLM, resulting in our ToolPrefer-LLaMA (TP-LLaMA) model. Our experiments demonstrate that by obtaining insights from errors in inference trees, TP-LLaMA significantly outperforms the baselines across almost all test scenarios by a large margin and exhibits better generalization capabilities with unseen APIs. At the same time, TP-LLaMA has also demonstrated superior reasoning efficiency compared to the baselines, making it more suitable for complex tool-usage reasoning tasks.
Abstract:Multiple Object Tracking (MOT) is a critical area within computer vision, with a broad spectrum of practical implementations. Current research has primarily focused on the development of tracking algorithms and enhancement of post-processing techniques. Yet, there has been a lack of thorough examination concerning the nature of tracking data it self. In this study, we pioneer an exploration into the distribution patterns of tracking data and identify a pronounced long-tail distribution issue within existing MOT datasets. We note a significant imbalance in the distribution of trajectory lengths across different pedestrians, a phenomenon we refer to as "pedestrians trajectory long-tail distribution". Addressing this challenge, we introduce a bespoke strategy designed to mitigate the effects of this skewed distribution. Specifically, we propose two data augmentation strategies, including Stationary Camera View Data Augmentation (SVA) and Dynamic Camera View Data Augmentation (DVA) , designed for viewpoint states and the Group Softmax (GS) module for Re-ID. SVA is to backtrack and predict the pedestrian trajectory of tail classes, and DVA is to use diffusion model to change the background of the scene. GS divides the pedestrians into unrelated groups and performs softmax operation on each group individually. Our proposed strategies can be integrated into numerous existing tracking systems, and extensive experimentation validates the efficacy of our method in reducing the influence of long-tail distribution on multi-object tracking performance. The code is available at https://github.com/chen-si-jia/Trajectory-Long-tail-Distribution-for-MOT.
Abstract:The reasoning performance of Large Language Models (LLMs) on a wide range of problems critically relies on chain-of-thought prompting, which involves providing a few chain of thought demonstrations as exemplars in prompts. Recent work, e.g., Tree of Thoughts, has pointed out the importance of exploration and self-evaluation in reasoning step selection for complex problem solving. In this paper, we present Boosting of Thoughts (BoT), an automated prompting framework for problem solving with LLMs by iteratively exploring and self-evaluating many trees of thoughts in order to acquire an ensemble of trial-and-error reasoning experiences, which will serve as a new form of prompting to solve the complex problem. Starting from a simple prompt without requiring examples, BoT iteratively explores and evaluates a large collection of reasoning steps, and more importantly, uses error analysis obtained from the LLM on them to explicitly revise prompting, which in turn enhances reasoning step generation, until a final answer is attained. Our experiments with GPT-4 and Llama2 across extensive complex mathematical problems demonstrate that BoT consistently achieves higher or comparable problem-solving rates than other advanced prompting approaches.
Abstract:Visual grounding (VG) tasks involve explicit cross-modal alignment, as semantically corresponding image regions are to be located for the language phrases provided. Existing approaches complete such visual-text reasoning in a single-step manner. Their performance causes high demands on large-scale anchors and over-designed multi-modal fusion modules based on human priors, leading to complicated frameworks that may be difficult to train and overfit to specific scenarios. Even worse, such once-for-all reasoning mechanisms are incapable of refining boxes continuously to enhance query-region matching. In contrast, in this paper, we formulate an iterative reasoning process by denoising diffusion modeling. Specifically, we propose a language-guided diffusion framework for visual grounding, LG-DVG, which trains the model to progressively reason queried object boxes by denoising a set of noisy boxes with the language guide. To achieve this, LG-DVG gradually perturbs query-aligned ground truth boxes to noisy ones and reverses this process step by step, conditional on query semantics. Extensive experiments for our proposed framework on five widely used datasets validate the superior performance of solving visual grounding, a cross-modal alignment task, in a generative way. The source codes are available at \url{https://github.com/iQua/vgbase/tree/DiffusionVG}.
Abstract:Stochastically Extended Adversarial (SEA) model is introduced by Sachs et al. [2022] as an interpolation between stochastic and adversarial online convex optimization. Under the smoothness condition, they demonstrate that the expected regret of optimistic follow-the-regularized-leader (FTRL) depends on the cumulative stochastic variance $\sigma_{1:T}^2$ and the cumulative adversarial variation $\Sigma_{1:T}^2$ for convex functions. They also provide a slightly weaker bound based on the maximal stochastic variance $\sigma_{\max}^2$ and the maximal adversarial variation $\Sigma_{\max}^2$ for strongly convex functions. Inspired by their work, we investigate the theoretical guarantees of optimistic online mirror descent (OMD) for the SEA model. For convex and smooth functions, we obtain the same $\mathcal{O}(\sqrt{\sigma_{1:T}^2}+\sqrt{\Sigma_{1:T}^2})$ regret bound, without the convexity requirement of individual functions. For strongly convex and smooth functions, we establish an $\mathcal{O}(\min\{\log (\sigma_{1:T}^2+\Sigma_{1:T}^2), (\sigma_{\max}^2 + \Sigma_{\max}^2) \log T\})$ bound, better than their $\mathcal{O}((\sigma_{\max}^2 + \Sigma_{\max}^2) \log T)$ bound. For \mbox{exp-concave} and smooth functions, we achieve a new $\mathcal{O}(d\log(\sigma_{1:T}^2+\Sigma_{1:T}^2))$ bound. Owing to the OMD framework, we can further extend our result to obtain dynamic regret guarantees, which are more favorable in non-stationary online scenarios. The attained results allow us to recover excess risk bounds of the stochastic setting and regret bounds of the adversarial setting, and derive new guarantees for many intermediate scenarios.
Abstract:Positioning with one inertial measurement unit and one ranging sensor is commonly thought to be feasible only when trajectories are in certain patterns ensuring observability. For this reason, to pursue observable patterns, it is required either exciting the trajectory or searching key nodes in a long interval, which is commonly highly nonlinear and may also lack resilience. Therefore, such a positioning approach is still not widely accepted in real-world applications. To address this issue, this work first investigates the dissipative nature of flying robots considering aerial drag effects and re-formulates the corresponding positioning problem, which guarantees observability almost surely. On this basis, a dimension-reduced wriggling estimator is proposed accordingly. This estimator slides the estimation horizon in a stepping manner, and output matrices can be approximately evaluated based on the historical estimation sequence. The computational complexity is then further reduced via a dimension-reduction approach using polynomial fittings. In this way, the states of robots can be estimated via linear programming in a sufficiently long interval, and the degree of observability is thereby further enhanced because an adequate redundancy of measurements is available for each estimation. Subsequently, the estimator's convergence and numerical stability are proven theoretically. Finally, both indoor and outdoor experiments verify that the proposed estimator can achieve decimeter-level precision at hundreds of hertz per second, and it is resilient to sensors' failures. Hopefully, this study can provide a new practical approach for self-localization as well as relative positioning of cooperative agents with low-cost and lightweight sensors.
Abstract:As the successor of H.265/HEVC, the new versatile video coding standard (H.266/VVC) can provide up to 50% bitrate saving with the same subjective quality, at the cost of increased decoding complexity. To accelerate the application of the new coding standard, a real-time H.266/VVC software decoder that can support various platforms is implemented, where SIMD technologies, parallelism optimization, and the acceleration strategies based on the characteristics of each coding tool are applied. As the mobile devices have become an essential carrier for video services nowadays, the mentioned optimization efforts are not only implemented for the x86 platform, but more importantly utilized to highly optimize the decoding performance on the ARM platform in this work. The experimental results show that when running on the Apple A14 SoC (iPhone 12pro), the average single-thread decoding speed of the present implementation can achieve 53fps (RA and LB) for full HD (1080p) bitstreams generated by VTM-11.0 reference software using 8bit Common Test Conditions (CTC). When multi-threading is enabled, an average of 32 fps (RA) can be achieved when decoding the 4K bitstreams.
Abstract:High-efficiency point cloud 3D object detection operated on embedded systems is important for many robotics applications including autonomous driving. Most previous works try to solve it using anchor-based detection methods which come with two drawbacks: post-processing is relatively complex and computationally expensive; tuning anchor parameters is tricky. We are the first to address these drawbacks with an anchor free and Non-Maximum Suppression free one stage detector called AFDet. The entire AFDet can be processed efficiently on a CNN accelerator or a GPU with the simplified post-processing. Without bells and whistles, our proposed AFDet performs competitively with other one stage anchor-based methods on KITTI validation set and Waymo Open Dataset validation set.