Abstract:With the blossom of deep learning models and services, it has become an imperative concern to safeguard the valuable model parameters from being stolen. Watermarking is considered an important tool for ownership verification. However, current watermarking schemes are customized for different models and tasks, hard to be integrated as an integrated intellectual protection service. We propose Hufu, a modality-agnostic watermarking system for pre-trained Transformer-based models, relying on the permutation equivariance property of Transformers. Hufu embeds watermark by fine-tuning the pre-trained model on a set of data samples specifically permuted, and the embedded model essentially contains two sets of weights -- one for normal use and the other for watermark extraction which is triggered on permuted inputs. The permutation equivariance ensures minimal interference between these two sets of model weights and thus high fidelity on downstream tasks. Since our method only depends on the model itself, it is naturally modality-agnostic, task-independent, and trigger-sample-free. Extensive experiments on the state-of-the-art vision Transformers, BERT, and GPT2 have demonstrated Hufu's superiority in meeting watermarking requirements including effectiveness, efficiency, fidelity, and robustness, showing its great potential to be deployed as a uniform ownership verification service for various Transformers.
Abstract:Federated learning has recently emerged as a decentralized approach to learn a high-performance model without access to user data. Despite its effectiveness, federated learning gives malicious users opportunities to manipulate the model by uploading poisoned model updates to the server. In this paper, we propose a review mechanism called FedReview to identify and decline the potential poisoned updates in federated learning. Under our mechanism, the server randomly assigns a subset of clients as reviewers to evaluate the model updates on their training datasets in each round. The reviewers rank the model updates based on the evaluation results and count the number of the updates with relatively low quality as the estimated number of poisoned updates. Based on review reports, the server employs a majority voting mechanism to integrate the rankings and remove the potential poisoned updates in the model aggregation process. Extensive evaluation on multiple datasets demonstrate that FedReview can assist the server to learn a well-performed global model in an adversarial environment.
Abstract:The reasoning performance of Large Language Models (LLMs) on a wide range of problems critically relies on chain-of-thought prompting, which involves providing a few chain of thought demonstrations as exemplars in prompts. Recent work, e.g., Tree of Thoughts, has pointed out the importance of exploration and self-evaluation in reasoning step selection for complex problem solving. In this paper, we present Boosting of Thoughts (BoT), an automated prompting framework for problem solving with LLMs by iteratively exploring and self-evaluating many trees of thoughts in order to acquire an ensemble of trial-and-error reasoning experiences, which will serve as a new form of prompting to solve the complex problem. Starting from a simple prompt without requiring examples, BoT iteratively explores and evaluates a large collection of reasoning steps, and more importantly, uses error analysis obtained from the LLM on them to explicitly revise prompting, which in turn enhances reasoning step generation, until a final answer is attained. Our experiments with GPT-4 and Llama2 across extensive complex mathematical problems demonstrate that BoT consistently achieves higher or comparable problem-solving rates than other advanced prompting approaches.
Abstract:Visual grounding (VG) tasks involve explicit cross-modal alignment, as semantically corresponding image regions are to be located for the language phrases provided. Existing approaches complete such visual-text reasoning in a single-step manner. Their performance causes high demands on large-scale anchors and over-designed multi-modal fusion modules based on human priors, leading to complicated frameworks that may be difficult to train and overfit to specific scenarios. Even worse, such once-for-all reasoning mechanisms are incapable of refining boxes continuously to enhance query-region matching. In contrast, in this paper, we formulate an iterative reasoning process by denoising diffusion modeling. Specifically, we propose a language-guided diffusion framework for visual grounding, LG-DVG, which trains the model to progressively reason queried object boxes by denoising a set of noisy boxes with the language guide. To achieve this, LG-DVG gradually perturbs query-aligned ground truth boxes to noisy ones and reverses this process step by step, conditional on query semantics. Extensive experiments for our proposed framework on five widely used datasets validate the superior performance of solving visual grounding, a cross-modal alignment task, in a generative way. The source codes are available at \url{https://github.com/iQua/vgbase/tree/DiffusionVG}.
Abstract:Federated learning (FL) has increasingly been deployed, in its vertical form, among organizations to facilitate secure collaborative training over siloed data. In vertical FL (VFL), participants hold disjoint features of the same set of sample instances. Among them, only one has labels. This participant, known as the active party, initiates the training and interacts with the other participants, known as the passive parties. Despite the increasing adoption of VFL, it remains largely unknown if and how the active party can extract feature data from the passive party, especially when training deep neural network (DNN) models. This paper makes the first attempt to study the feature security problem of DNN training in VFL. We consider a DNN model partitioned between active and passive parties, where the latter only holds a subset of the input layer and exhibits some categorical features of binary values. Using a reduction from the Exact Cover problem, we prove that reconstructing those binary features is NP-hard. Through analysis, we demonstrate that, unless the feature dimension is exceedingly large, it remains feasible, both theoretically and practically, to launch a reconstruction attack with an efficient search-based algorithm that prevails over current feature protection techniques. To address this problem, we develop a novel feature protection scheme against the reconstruction attack that effectively misleads the search to some pre-specified random values. With an extensive set of experiments, we show that our protection scheme sustains the feature reconstruction attack in various VFL applications at no expense of accuracy loss.
Abstract:Federated learning (FL) is typically performed in a synchronous parallel manner, where the involvement of a slow client delays a training iteration. Current FL systems employ a participant selection strategy to select fast clients with quality data in each iteration. However, this is not always possible in practice, and the selection strategy often has to navigate an unpleasant trade-off between the speed and the data quality of clients. In this paper, we present Pisces, an asynchronous FL system with intelligent participant selection and model aggregation for accelerated training. To avoid incurring excessive resource cost and stale training computation, Pisces uses a novel scoring mechanism to identify suitable clients to participate in a training iteration. It also adapts the pace of model aggregation to dynamically bound the progress gap between the selected clients and the server, with a provable convergence guarantee in a smooth non-convex setting. We have implemented Pisces in an open-source FL platform called Plato, and evaluated its performance in large-scale experiments with popular vision and language models. Pisces outperforms the state-of-the-art synchronous and asynchronous schemes, accelerating the time-to-accuracy by up to 2.0x and 1.9x, respectively.
Abstract:This paper proposes a new eXplanation framework, called OrphicX, for generating causal explanations for any graph neural networks (GNNs) based on learned latent causal factors. Specifically, we construct a distinct generative model and design an objective function that encourages the generative model to produce causal, compact, and faithful explanations. This is achieved by isolating the causal factors in the latent space of graphs by maximizing the information flow measurements. We theoretically analyze the cause-effect relationships in the proposed causal graph, identify node attributes as confounders between graphs and GNN predictions, and circumvent such confounder effect by leveraging the backdoor adjustment formula. Our framework is compatible with any GNNs, and it does not require access to the process by which the target GNN produces its predictions. In addition, it does not rely on the linear-independence assumption of the explained features, nor require prior knowledge on the graph learning tasks. We show a proof-of-concept of OrphicX on canonical classification problems on graph data. In particular, we analyze the explanatory subgraphs obtained from explanations for molecular graphs (i.e., Mutag) and quantitatively evaluate the explanation performance with frequently occurring subgraph patterns. Empirically, we show that OrphicX can effectively identify the causal semantics for generating causal explanations, significantly outperforming its alternatives.
Abstract:Many real-world networks are inherently decentralized. For example, in social networks, each user maintains a local view of a social graph, such as a list of friends and her profile. It is typical to collect these local views of social graphs and conduct graph learning tasks. However, learning over graphs can raise privacy concerns as these local views often contain sensitive information. In this paper, we seek to ensure private graph learning on a decentralized network graph. Towards this objective, we propose {\em Solitude}, a new privacy-preserving learning framework based on graph neural networks (GNNs), with formal privacy guarantees based on edge local differential privacy. The crux of {\em Solitude} is a set of new delicate mechanisms that can calibrate the introduced noise in the decentralized graph collected from the users. The principle behind the calibration is the intrinsic properties shared by many real-world graphs, such as sparsity. Unlike existing work on locally private GNNs, our new framework can simultaneously protect node feature privacy and edge privacy, and can seamlessly incorporate with any GNN with privacy-utility guarantees. Extensive experiments on benchmarking datasets show that {\em Solitude} can retain the generalization capability of the learned GNN while preserving the users' data privacy under given privacy budgets.
Abstract:This paper presents Gem, a model-agnostic approach for providing interpretable explanations for any GNNs on various graph learning tasks. Specifically, we formulate the problem of providing explanations for the decisions of GNNs as a causal learning task. Then we train a causal explanation model equipped with a loss function based on Granger causality. Different from existing explainers for GNNs, Gem explains GNNs on graph-structured data from a causal perspective. It has better generalization ability as it has no requirements on the internal structure of the GNNs or prior knowledge on the graph learning tasks. In addition, Gem, once trained, can be used to explain the target GNN very quickly. Our theoretical analysis shows that several recent explainers fall into a unified framework of additive feature attribution methods. Experimental results on synthetic and real-world datasets show that Gem achieves a relative increase of the explanation accuracy by up to $30\%$ and speeds up the explanation process by up to $110\times$ as compared to its state-of-the-art alternatives.
Abstract:As a certified defensive technique, randomized smoothing has received considerable attention due to its scalability to large datasets and neural networks. However, several important questions remain unanswered, such as (i) whether the Gaussian mechanism is an appropriate option for certifying $\ell_2$-norm robustness, and (ii) whether there is an appropriate randomized (smoothing) mechanism to certify $\ell_\infty$-norm robustness. To shed light on these questions, we argue that the main difficulty is how to assess the appropriateness of each randomized mechanism. In this paper, we propose a generic framework that connects the existing frameworks in \cite{lecuyer2018certified, li2019certified}, to assess randomized mechanisms. Under our framework, for a randomized mechanism that can certify a certain extent of robustness, we define the magnitude of its required additive noise as the metric for assessing its appropriateness. We also prove lower bounds on this metric for the $\ell_2$-norm and $\ell_\infty$-norm cases as the criteria for assessment. Based on our framework, we assess the Gaussian and Exponential mechanisms by comparing the magnitude of additive noise required by these mechanisms and the lower bounds (criteria). We first conclude that the Gaussian mechanism is indeed an appropriate option to certify $\ell_2$-norm robustness. Surprisingly, we show that the Gaussian mechanism is also an appropriate option for certifying $\ell_\infty$-norm robustness, instead of the Exponential mechanism. Finally, we generalize our framework to $\ell_p$-norm for any $p\geq2$. Our theoretical findings are verified by evaluations on CIFAR10 and ImageNet.