Abstract:Open-vocabulary multiple object tracking aims to generalize trackers to unseen categories during training, enabling their application across a variety of real-world scenarios. However, the existing open-vocabulary tracker is constrained by its framework structure, isolated frame-level perception, and insufficient modal interactions, which hinder its performance in open-vocabulary classification and tracking. In this paper, we propose OVTR (End-to-End Open-Vocabulary Multiple Object Tracking with TRansformer), the first end-to-end open-vocabulary tracker that models motion, appearance, and category simultaneously. To achieve stable classification and continuous tracking, we design the CIP (Category Information Propagation) strategy, which establishes multiple high-level category information priors for subsequent frames. Additionally, we introduce a dual-branch structure for generalization capability and deep multimodal interaction, and incorporate protective strategies in the decoder to enhance performance. Experimental results show that our method surpasses previous trackers on the open-vocabulary MOT benchmark while also achieving faster inference speeds and significantly reducing preprocessing requirements. Moreover, the experiment transferring the model to another dataset demonstrates its strong adaptability. Models and code are released at https://github.com/jinyanglii/OVTR.
Abstract:In the pursuit of superior video-processing MLLMs, we have encountered a perplexing paradox: the "anti-scaling law", where more data and larger models lead to worse performance. This study unmasks the culprit: "temporal hacking", a phenomenon where models shortcut by fixating on select frames, missing the full video narrative. In this work, we systematically establish a comprehensive theory of temporal hacking, defining it from a reinforcement learning perspective, introducing the Temporal Perplexity (TPL) score to assess this misalignment, and proposing the Unhackable Temporal Rewarding (UTR) framework to mitigate the temporal hacking. Both theoretically and empirically, TPL proves to be a reliable indicator of temporal modeling quality, correlating strongly with frame activation patterns. Extensive experiments reveal that UTR not only counters temporal hacking but significantly elevates video comprehension capabilities. This work not only advances video-AI systems but also illuminates the critical importance of aligning proxy rewards with true objectives in MLLM development.
Abstract:Referring Multi-Object Tracking (RMOT) is an important topic in the current tracking field. Its task form is to guide the tracker to track objects that match the language description. Current research mainly focuses on referring multi-object tracking under single-view, which refers to a view sequence or multiple unrelated view sequences. However, in the single-view, some appearances of objects are easily invisible, resulting in incorrect matching of objects with the language description. In this work, we propose a new task, called Cross-view Referring Multi-Object Tracking (CRMOT). It introduces the cross-view to obtain the appearances of objects from multiple views, avoiding the problem of the invisible appearances of objects in RMOT task. CRMOT is a more challenging task of accurately tracking the objects that match the language description and maintaining the identity consistency of objects in each cross-view. To advance CRMOT task, we construct a cross-view referring multi-object tracking benchmark based on CAMPUS and DIVOTrack datasets, named CRTrack. Specifically, it provides 13 different scenes and 221 language descriptions. Furthermore, we propose an end-to-end cross-view referring multi-object tracking method, named CRTracker. Extensive experiments on the CRTrack benchmark verify the effectiveness of our method. The dataset and code are available at https://github.com/chen-si-jia/CRMOT.
Abstract:Novel view synthesis with sparse inputs poses great challenges to Neural Radiance Field (NeRF). Recent works demonstrate that the frequency regularization of Positional Encoding (PE) can achieve promising results for few-shot NeRF. In this work, we reveal that there exists an inconsistency between the frequency regularization of PE and rendering loss. This prevents few-shot NeRF from synthesizing higher-quality novel views. To mitigate this inconsistency, we propose Adaptive Rendering loss regularization for few-shot NeRF, dubbed AR-NeRF. Specifically, we present a two-phase rendering supervision and an adaptive rendering loss weight learning strategy to align the frequency relationship between PE and 2D-pixel supervision. In this way, AR-NeRF can learn global structures better in the early training phase and adaptively learn local details throughout the training process. Extensive experiments show that our AR-NeRF achieves state-of-the-art performance on different datasets, including object-level and complex scenes.
Abstract:Point cloud registration (PCR) involves determining a rigid transformation that aligns one point cloud to another. Despite the plethora of outstanding deep learning (DL)-based registration methods proposed, comprehensive and systematic studies on DL-based PCR techniques are still lacking. In this paper, we present a comprehensive survey and taxonomy of recently proposed PCR methods. Firstly, we conduct a taxonomy of commonly utilized datasets and evaluation metrics. Secondly, we classify the existing research into two main categories: supervised and unsupervised registration, providing insights into the core concepts of various influential PCR models. Finally, we highlight open challenges and potential directions for future research. A curated collection of valuable resources is made available at https://github.com/yxzhang15/PCR.
Abstract:Multiple Object Tracking (MOT) is a critical area within computer vision, with a broad spectrum of practical implementations. Current research has primarily focused on the development of tracking algorithms and enhancement of post-processing techniques. Yet, there has been a lack of thorough examination concerning the nature of tracking data it self. In this study, we pioneer an exploration into the distribution patterns of tracking data and identify a pronounced long-tail distribution issue within existing MOT datasets. We note a significant imbalance in the distribution of trajectory lengths across different pedestrians, a phenomenon we refer to as "pedestrians trajectory long-tail distribution". Addressing this challenge, we introduce a bespoke strategy designed to mitigate the effects of this skewed distribution. Specifically, we propose two data augmentation strategies, including Stationary Camera View Data Augmentation (SVA) and Dynamic Camera View Data Augmentation (DVA) , designed for viewpoint states and the Group Softmax (GS) module for Re-ID. SVA is to backtrack and predict the pedestrian trajectory of tail classes, and DVA is to use diffusion model to change the background of the scene. GS divides the pedestrians into unrelated groups and performs softmax operation on each group individually. Our proposed strategies can be integrated into numerous existing tracking systems, and extensive experimentation validates the efficacy of our method in reducing the influence of long-tail distribution on multi-object tracking performance. The code is available at https://github.com/chen-si-jia/Trajectory-Long-tail-Distribution-for-MOT.
Abstract:Surface reconstruction has traditionally relied on the Multi-View Stereo (MVS)-based pipeline, which often suffers from noisy and incomplete geometry. This is due to that although MVS has been proven to be an effective way to recover the geometry of the scenes, especially for locally detailed areas with rich textures, it struggles to deal with areas with low texture and large variations of illumination where the photometric consistency is unreliable. Recently, Neural Implicit Surface Reconstruction (NISR) combines surface rendering and volume rendering techniques and bypasses the MVS as an intermediate step, which has emerged as a promising alternative to overcome the limitations of traditional pipelines. While NISR has shown impressive results on simple scenes, it remains challenging to recover delicate geometry from uncontrolled real-world scenes which is caused by its underconstrained optimization. To this end, the framework PSDF is proposed which resorts to external geometric priors from a pretrained MVS network and internal geometric priors inherent in the NISR model to facilitate high-quality neural implicit surface learning. Specifically, the visibility-aware feature consistency loss and depth prior-assisted sampling based on external geometric priors are introduced. These proposals provide powerfully geometric consistency constraints and aid in locating surface intersection points, thereby significantly improving the accuracy and delicate reconstruction of NISR. Meanwhile, the internal prior-guided importance rendering is presented to enhance the fidelity of the reconstructed surface mesh by mitigating the biased rendering issue in NISR. Extensive experiments on the Tanks and Temples dataset show that PSDF achieves state-of-the-art performance on complex uncontrolled scenes.
Abstract:Neural surfaces learning has shown impressive performance in multi-view surface reconstruction. However, most existing methods use large multilayer perceptrons (MLPs) to train their models from scratch, resulting in hours of training for a single scene. Recently, how to accelerate the neural surfaces learning has received a lot of attention and remains an open problem. In this work, we propose a prior-based residual learning paradigm for fast multi-view neural surface reconstruction. This paradigm consists of two optimization stages. In the first stage, we propose to leverage generalization models to generate a basis signed distance function (SDF) field. This initial field can be quickly obtained by fusing multiple local SDF fields produced by generalization models. This provides a coarse global geometry prior. Based on this prior, in the second stage, a fast residual learning strategy based on hash-encoding networks is proposed to encode an offset SDF field for the basis SDF field. Moreover, we introduce a prior-guided sampling scheme to help the residual learning stage converge better, and thus recover finer structures. With our designed paradigm, experimental results show that our method only takes about 3 minutes to reconstruct the surface of a single scene, while achieving competitive surface quality. Our code will be released upon publication.
Abstract:Point Cloud Registration (PCR) estimates the relative rigid transformation between two point clouds. We propose formulating PCR as a denoising diffusion probabilistic process, mapping noisy transformations to the ground truth. However, using diffusion models for PCR has nontrivial challenges, such as adapting a generative model to a discriminative task and leveraging the estimated nonlinear transformation from the previous step. Instead of training a diffusion model to directly map pure noise to ground truth, we map the predictions of an off-the-shelf PCR model to ground truth. The predictions of off-the-shelf models are often imperfect, especially in challenging cases where the two points clouds have low overlap, and thus could be seen as noisy versions of the real rigid transformation. In addition, we transform the rotation matrix into a spherical linear space for interpolation between samples in the forward process, and convert rigid transformations into auxiliary information to implicitly exploit last-step estimations in the reverse process. As a result, conditioned on time step, the denoising model adapts to the increasing accuracy across steps and refines registrations. Our extensive experiments showcase the effectiveness of our DiffusionPCR, yielding state-of-the-art registration recall rates (95.3%/81.6%) on 3DMatch and 3DLoMatch. The code will be made public upon publication.
Abstract:Humans possess the remarkable ability to foresee the future to a certain extent based on present observations, a skill we term as foresight minds. However, this capability remains largely under explored within existing Multimodal Large Language Models (MLLMs), hindering their capacity to learn the fundamental principles of how things operate and the intentions behind the observed subjects. To address this issue, we introduce the integration of future modeling into the existing learning frameworks of MLLMs. By utilizing the subject trajectory, a highly structured representation of a consecutive frame sequence, as a learning objective, we aim to bridge the gap between the past and the future. We propose two innovative methods to empower MLLMs with foresight minds, Foresight Pre-Training (FPT) and Foresight Instruction-Tuning (FIT), which are inspired by the modern learning paradigm of LLMs. Specifically, FPT jointly training various tasks centered on trajectories, enabling MLLMs to learn how to attend and predict entire trajectories from a given initial observation. Then, FIT requires MLLMs to first predict trajectories of related objects and then reason about potential future events based on them. Aided by FPT and FIT, we build a novel and unified MLLM named Merlin that supports multi-images input and analysis about potential actions of multiple objects for the future reasoning. Experimental results show Merlin powerful foresight minds with impressive performance on both future reasoning and visual comprehension tasks.