Abstract:Scene Graph Generation(SGG) is a scene understanding task that aims at identifying object entities and reasoning their relationships within a given image. In contrast to prevailing two-stage methods based on a large object detector (e.g., Faster R-CNN), one-stage methods integrate a fixed-size set of learnable queries to jointly reason relational triplets <subject, predicate, object>. This paradigm demonstrates robust performance with significantly reduced parameters and computational overhead. However, the challenge in one-stage methods stems from the issue of weak entanglement, wherein entities involved in relationships require both coupled features shared within triplets and decoupled visual features. Previous methods either adopt a single decoder for coupled triplet feature modeling or multiple decoders for separate visual feature extraction but fail to consider both. In this paper, we introduce UniQ, a Unified decoder with task-specific Queries architecture, where task-specific queries generate decoupled visual features for subjects, objects, and predicates respectively, and unified decoder enables coupled feature modeling within relational triplets. Experimental results on the Visual Genome dataset demonstrate that UniQ has superior performance to both one-stage and two-stage methods.
Abstract:Neural surfaces learning has shown impressive performance in multi-view surface reconstruction. However, most existing methods use large multilayer perceptrons (MLPs) to train their models from scratch, resulting in hours of training for a single scene. Recently, how to accelerate the neural surfaces learning has received a lot of attention and remains an open problem. In this work, we propose a prior-based residual learning paradigm for fast multi-view neural surface reconstruction. This paradigm consists of two optimization stages. In the first stage, we propose to leverage generalization models to generate a basis signed distance function (SDF) field. This initial field can be quickly obtained by fusing multiple local SDF fields produced by generalization models. This provides a coarse global geometry prior. Based on this prior, in the second stage, a fast residual learning strategy based on hash-encoding networks is proposed to encode an offset SDF field for the basis SDF field. Moreover, we introduce a prior-guided sampling scheme to help the residual learning stage converge better, and thus recover finer structures. With our designed paradigm, experimental results show that our method only takes about 3 minutes to reconstruct the surface of a single scene, while achieving competitive surface quality. Our code will be released upon publication.