University of California Riverside
Abstract:State Space Models (SSM), such as Mamba, have shown strong representation ability in modeling long-range dependency with linear complexity, achieving successful applications from high-level to low-level vision tasks. However, SSM's sequential nature necessitates multiple scans in different directions to compensate for the loss of spatial dependency when unfolding the image into a 1D sequence. This multi-direction scanning strategy significantly increases the computation overhead and is unbearable for high-resolution image processing. To address this problem, we propose a novel Hierarchical Mamba network, namely, Hi-Mamba, for image super-resolution (SR). Hi-Mamba consists of two key designs: (1) The Hierarchical Mamba Block (HMB) assembled by a Local SSM (L-SSM) and a Region SSM (R-SSM) both with the single-direction scanning, aggregates multi-scale representations to enhance the context modeling ability. (2) The Direction Alternation Hierarchical Mamba Group (DA-HMG) allocates the isomeric single-direction scanning into cascading HMBs to enrich the spatial relationship modeling. Extensive experiments demonstrate the superiority of Hi-Mamba across five benchmark datasets for efficient SR. For example, Hi-Mamba achieves a significant PSNR improvement of 0.29 dB on Manga109 for $\times3$ SR, compared to the strong lightweight MambaIR.
Abstract:Joint-embedding predictive architectures (JEPAs) have shown substantial promise in self-supervised representation learning, yet their application in generative modeling remains underexplored. Conversely, diffusion models have demonstrated significant efficacy in modeling arbitrary probability distributions. In this paper, we introduce Denoising with a Joint-Embedding Predictive Architecture (D-JEPA), pioneering the integration of JEPA within generative modeling. By recognizing JEPA as a form of masked image modeling, we reinterpret it as a generalized next-token prediction strategy, facilitating data generation in an auto-regressive manner. Furthermore, we incorporate diffusion loss to model the per-token probability distribution, enabling data generation in a continuous space. We also adapt flow matching loss as an alternative to diffusion loss, thereby enhancing the flexibility of D-JEPA. Empirically, with increased GFLOPs, D-JEPA consistently achieves lower FID scores with fewer training epochs, indicating its good scalability. Our base, large, and huge models outperform all previous generative models across all scales on class-conditional ImageNet benchmarks. Beyond image generation, D-JEPA is well-suited for other continuous data modeling, including video and audio.
Abstract:Recent advances indicate that diffusion models hold great promise in image super-resolution. While the latest methods are primarily based on latent diffusion models with convolutional neural networks, there are few attempts to explore transformers, which have demonstrated remarkable performance in image generation. In this work, we design an effective diffusion transformer for image super-resolution (DiT-SR) that achieves the visual quality of prior-based methods, but through a training-from-scratch manner. In practice, DiT-SR leverages an overall U-shaped architecture, and adopts a uniform isotropic design for all the transformer blocks across different stages. The former facilitates multi-scale hierarchical feature extraction, while the latter reallocates the computational resources to critical layers to further enhance performance. Moreover, we thoroughly analyze the limitation of the widely used AdaLN, and present a frequency-adaptive time-step conditioning module, enhancing the model's capacity to process distinct frequency information at different time steps. Extensive experiments demonstrate that DiT-SR outperforms the existing training-from-scratch diffusion-based SR methods significantly, and even beats some of the prior-based methods on pretrained Stable Diffusion, proving the superiority of diffusion transformer in image super-resolution.
Abstract:The curvature of ODE trajectories in diffusion models hinders their ability to generate high-quality images in a few number of function evaluations (NFE). In this paper, we propose a novel and effective approach to reduce trajectory curvature by utilizing adaptive conditions. By employing a extremely light-weight quantized encoder, our method incurs only an additional 1% of training parameters, eliminates the need for extra regularization terms, yet achieves significantly better sample quality. Our approach accelerates ODE sampling while preserving the downstream task image editing capabilities of SDE techniques. Extensive experiments verify that our method can generate high quality results under extremely limited sampling costs. With only 6 NFE, we achieve 5.14 FID on CIFAR-10, 6.91 FID on FFHQ 64x64 and 3.10 FID on AFHQv2.
Abstract:Distributed learning is essential to train machine learning algorithms across heterogeneous agents while maintaining data privacy. We conduct an asymptotic analysis of Unified Distributed SGD (UD-SGD), exploring a variety of communication patterns, including decentralized SGD and local SGD within Federated Learning (FL), as well as the increasing communication interval in the FL setting. In this study, we assess how different sampling strategies, such as i.i.d. sampling, shuffling, and Markovian sampling, affect the convergence speed of UD-SGD by considering the impact of agent dynamics on the limiting covariance matrix as described in the Central Limit Theorem (CLT). Our findings not only support existing theories on linear speedup and asymptotic network independence, but also theoretically and empirically show how efficient sampling strategies employed by individual agents contribute to overall convergence in UD-SGD. Simulations reveal that a few agents using highly efficient sampling can achieve or surpass the performance of the majority employing moderately improved strategies, providing new insights beyond traditional analyses focusing on the worst-performing agent.
Abstract:In the field of autonomous driving, Bird's-Eye-View (BEV) perception has attracted increasing attention in the community since it provides more comprehensive information compared with pinhole front-view images and panoramas. Traditional BEV methods, which rely on multiple narrow-field cameras and complex pose estimations, often face calibration and synchronization issues. To break the wall of the aforementioned challenges, in this work, we introduce OneBEV, a novel BEV semantic mapping approach using merely a single panoramic image as input, simplifying the mapping process and reducing computational complexities. A distortion-aware module termed Mamba View Transformation (MVT) is specifically designed to handle the spatial distortions in panoramas, transforming front-view features into BEV features without leveraging traditional attention mechanisms. Apart from the efficient framework, we contribute two datasets, i.e., nuScenes-360 and DeepAccident-360, tailored for the OneBEV task. Experimental results showcase that OneBEV achieves state-of-the-art performance with 51.1% and 36.1% mIoU on nuScenes-360 and DeepAccident-360, respectively. This work advances BEV semantic mapping in autonomous driving, paving the way for more advanced and reliable autonomous systems.
Abstract:In this letter, we investigate the design of multiple reconfigurable intelligent sensing surfaces (RISSs) that enhance both communication and sensing tasks. An RISS incorporates additional active elements tailored to improve sensing accuracy. Our initial task involves optimizing placement of RISSs to mitigate signal interference. Subsequently, we establish power allocation schemes for sensing and communication within the system. Our final consideration involves examining how sensing results can be utilized to enhance communication, alongside an evaluation of communication performance under the impact of sensing inaccuracies. Numerical results reveal that the sensing task reaches its optimal performance with a finite number of RISSs, while the communication task exhibits enhanced performance with an increasing number of RISSs. Additionally, we identify an optimal communication spot under user movement.
Abstract:Rapid advancements have been made in extending Large Language Models (LLMs) to Large Multi-modal Models (LMMs). However, extending input modality of LLMs to video data remains a challenging endeavor, especially for long videos. Due to insufficient access to large-scale high-quality video data and the excessive compression of visual features, current methods exhibit limitations in effectively processing long videos. In this paper, we introduce Kangaroo, a powerful Video LMM aimed at addressing these challenges. Confronted with issue of inadequate training data, we develop a data curation system to build a large-scale dataset with high-quality annotations for vision-language pre-training and instruction tuning. In addition, we design a curriculum training pipeline with gradually increasing resolution and number of input frames to accommodate long videos. Evaluation results demonstrate that, with 8B parameters, Kangaroo achieves state-of-the-art performance across a variety of video understanding benchmarks while exhibiting competitive results on others. Particularly, on benchmarks specialized for long videos, Kangaroo excels some larger models with over 10B parameters and proprietary models.
Abstract:When applying integrated sensing and communications (ISAC) in future mobile networks, many sensing tasks have low latency requirements, preferably being implemented at terminals. However, terminals often have limited computing capabilities and energy supply. In this paper, we investigate the effectiveness of leveraging the advanced computing capabilities of mobile edge computing (MEC) servers and the cloud server to address the sensing tasks of ISAC terminals. Specifically, we propose a novel three-tier integrated sensing, communication, and computing (ISCC) framework composed of one cloud server, multiple MEC servers, and multiple terminals, where the terminals can optionally offload sensing data to the MEC server or the cloud server. The offload message is sent via the ISAC waveform, whose echo is used for sensing. We jointly optimize the computation offloading and beamforming strategies to minimize the average execution latency while satisfying sensing requirements. In particular, we propose a low-complexity distributed algorithm to solve the problem. Firstly, we use the alternating direction method of multipliers (ADMM) and derive the closed-form solution for offloading decision variables. Subsequently, we convert the beamforming optimization sub-problem into a weighted minimum mean-square error (WMMSE) problem and propose a fractional programming based algorithm. Numerical results demonstrate that the proposed ISCC framework and distributed algorithm significantly reduce the execution latency and the energy consumption of sensing tasks at a lower computational complexity compared to existing schemes.
Abstract:In Natural Language Processing (NLP), Large Language Models (LLMs) have demonstrated high text generation quality. However, in real-world applications, LLMs must meet increasingly complex requirements. Beyond avoiding misleading or inappropriate content, LLMs are also expected to cater to specific user needs, such as imitating particular writing styles or generating text with poetic richness. These varied demands have driven the development of Controllable Text Generation (CTG) techniques, which ensure that outputs adhere to predefined control conditions--such as safety, sentiment, thematic consistency, and linguistic style--while maintaining high standards of helpfulness, fluency, and diversity. This paper systematically reviews the latest advancements in CTG for LLMs, offering a comprehensive definition of its core concepts and clarifying the requirements for control conditions and text quality. We categorize CTG tasks into two primary types: content control and attribute control. The key methods are discussed, including model retraining, fine-tuning, reinforcement learning, prompt engineering, latent space manipulation, and decoding-time intervention. We analyze each method's characteristics, advantages, and limitations, providing nuanced insights for achieving generation control. Additionally, we review CTG evaluation methods, summarize its applications across domains, and address key challenges in current research, including reduced fluency and practicality. We also propose several appeals, such as placing greater emphasis on real-world applications in future research. This paper aims to offer valuable guidance to researchers and developers in the field. Our reference list and Chinese version are open-sourced at https://github.com/IAAR-Shanghai/CTGSurvey.