Abstract:In this letter, we investigate the design of multiple reconfigurable intelligent sensing surfaces (RISSs) that enhance both communication and sensing tasks. An RISS incorporates additional active elements tailored to improve sensing accuracy. Our initial task involves optimizing placement of RISSs to mitigate signal interference. Subsequently, we establish power allocation schemes for sensing and communication within the system. Our final consideration involves examining how sensing results can be utilized to enhance communication, alongside an evaluation of communication performance under the impact of sensing inaccuracies. Numerical results reveal that the sensing task reaches its optimal performance with a finite number of RISSs, while the communication task exhibits enhanced performance with an increasing number of RISSs. Additionally, we identify an optimal communication spot under user movement.
Abstract:In order to transmit data and transfer energy to the low-power Internet of Things (IoT) devices, integrated data and energy networking (IDEN) system may be harnessed. In this context, we propose a bitwise end-to-end design for polar coded IDEN systems, where the conventional encoding/decoding, modulation/demodulation, and energy harvesting (EH) modules are replaced by the neural networks (NNs). In this way, the entire system can be treated as an AutoEncoder (AE) and trained in an end-to-end manner. Hence achieving global optimization. Additionally, we improve the common NN-based belief propagation (BP) decoder by adding an extra hypernetwork, which generates the corresponding NN weights for the main network under different number of iterations, thus the adaptability of the receiver architecture can be further enhanced. Our numerical results demonstrate that our BP-based end-to-end design is superior to conventional BP-based counterparts in terms of both the BER and power transfer, but it is inferior to the successive cancellation list (SCL)-based conventional IDEN system, which may be due to the inherent performance gap between the BP and SCL decoders.
Abstract:Intelligent Reflecting Surface (IRS) utilizes low-cost, passive reflecting elements to enhance the passive beam gain, improve Wireless Energy Transfer (WET) efficiency, and enable its deployment for numerous Internet of Things (IoT) devices. However, the increasing number of IRS elements presents considerable channel estimation challenges. This is due to the lack of active Radio Frequency (RF) chains in an IRS, while pilot overhead becomes intolerable. To address this issue, we propose a Channel State Information (CSI)-free scheme that maximizes received energy in a specific direction and covers the entire space through phased beam rotation. Furthermore, we take into account the impact of an imperfect IRS and meticulously design the active precoder and IRS reflecting phase shift to mitigate its effects. Our proposed technique does not alter the existing IRS hardware architecture, allowing for easy implementation in the current system, and enabling access or removal of any Energy Receivers (ERs) without additional cost. Numerical results illustrate the efficacy of our CSI-free scheme in facilitating large-scale IRS without compromising performance due to excessive pilot overhead. Furthermore, our scheme outperforms the CSI-based counterpart in scenarios involving large-scale ERs, making it a promising solution in the era of IoT.
Abstract:In this paper, we propose a green beamforming design for the integrated sensing and communication (ISAC) system, using beam-matching error to assess radar performance. The beam-matching error metric, which considers the mean square error between the desired and designed beam patterns, provides a more practical evaluation approach. To tackle the non-convex challenge inherent in beamforming design, we apply semidefinite relaxation (SDR) to address the rank-one relaxation issue, followed by the iterative rank minimization algorithm (IRM) for rank-one recovery. The simulation results showcase the effectiveness of our proposed optimal beamforming design, emphasizing the exceptional performance of the radar component in sensing tasks.
Abstract:This paper proposes a novel non-orthogonal multiple access (NOMA)-assisted orthogonal time-frequency space (OTFS)-integrated sensing and communication (ISAC) network, which uses unmanned aerial vehicles (UAVs) as air base stations to support multiple users. By employing ISAC, the UAV extracts position and velocity information from the user's echo signals, and non-orthogonal power allocation is conducted to achieve a superior achievable rate. A 3D motion prediction topology is used to guide the NOMA transmission for multiple users, and a robust power allocation solution is proposed under perfect and imperfect channel estimation for Maxi-min Fairness (MMF) and Maximum sum-Rate (SR) problems. Simulation results demonstrate the superiority of the proposed NOMA-assisted OTFS-ISAC system over other systems in terms of achievable rate under both perfect and imperfect channel conditions with the aid of 3D motion prediction topology.
Abstract:This paper presents a reconfigurable intelligent sensing surface (RISS) that combines passive and active elements to achieve simultaneous reflection and direction of arrival (DOA) estimation tasks. By utilizing DOA information from the RISS instead of conventional channel estimation, the pilot overhead is reduced and the RISS becomes independent of the hybrid access point (HAP), enabling efficient operation. Specifically, the RISS autonomously estimates the DOA of uplink signals from single-antenna users and reflects them using the HAP's slowly varying DOA information. During downlink transmission, it updates the HAP's DOA information and designs the reflection phase of energy signals based on the latest user DOA information. The paper includes a comprehensive performance analysis, covering system design, protocol details, receiving performance, and RISS deployment suggestions. We derive a closed-form expression to analyze system performance under DOA errors, and calculate the statistical distribution of user received energy using the moment-matching technique. We provide a recommended transmit power to meet a specified outage probability and energy threshold. Numerical results demonstrate that the proposed system outperforms the conventional counterpart by 2.3 dB and 4.7 dB for Rician factors $\kappa_h=\kappa_G=1$ and $\kappa_h=\kappa_G=10$, respectively.
Abstract:Wireless sensors are everywhere. To address their energy supply, we proposed an end-to-end design for polar-coded integrated data and energy networking (IDEN), where the conventional signal processing modules, such as modulation/demodulation and channel decoding, are replaced by deep neural networks (DNNs). Moreover, the input-output relationship of an energy harvester (EH) is also modelled by a DNN. By jointly optimizing both the transmitter and the receiver as an autoencoder (AE), we minimize the bit-error-rate (BER) and maximize the harvested energy of the IDEN system, while satisfying the transmit power budget constraint determined by the normalization layer in the transmitter. Our simulation results demonstrate that the DNN aided end-to-end design conceived outperforms its conventional model-based counterpart both in terms of the harvested energy and the BER.
Abstract:Integrated data and energy transfer (IDET) is an advanced technology for enabling energy sustainability for massively deployed low-power electronic consumption components. However, the existing work of IDET using the orthogonal-frequency-division-multiplexing (OFDM) waveforms is designed for static scenarios, which would be severely affected by the destructive Doppler offset in high-mobility scenarios. Therefore, we proposed an IDET system based on orthogonal-time-frequency-space (OTFS) waveforms with the imperfect channel assumption, which is capable of counteracting the Doppler offset in high-mobility scenarios. At the transmitter, the OTFS-IDET system superimposes the random data signals and deterministic energy signals in the delay-Doppler (DD) domain with optimally designed amplitudes. The receiver optimally splits the received signal in the power domain for achieving the best IDET performance. After formulating a non-convex optimisation problem, it is transformed into a geometric programming (GP) problem through inequality relaxations to obtain the optimal solution. The simulation demonstrates that a higher amount of energy can be harvested when employing our proposed OTFS-IDET waveforms than the conventional OFDM-IDET ones in high mobility scenarios.