Abstract:Motion customization aims to adapt the diffusion model (DM) to generate videos with the motion specified by a set of video clips with the same motion concept. To realize this goal, the adaptation of DM should be possible to model the specified motion concept, without compromising the ability to generate diverse appearances. Thus, the key to solving this problem lies in how to separate the motion concept from the appearance in the adaptation process of DM. Typical previous works explore different ways to represent and insert a motion concept into large-scale pretrained text-to-video diffusion models, e.g., learning a motion LoRA, using latent noise residuals, etc. While those methods can encode the motion concept, they also inevitably encode the appearance in the reference videos, resulting in weakened appearance generation capability. In this paper, we follow the typical way to learn a motion LoRA to encode the motion concept, but propose two novel strategies to enhance motion-appearance separation, including temporal attention purification (TAP) and appearance highway (AH). Specifically, we assume that in the temporal attention module, the pretrained Value embeddings are sufficient to serve as basic components needed by producing a new motion. Thus, in TAP, we choose only to reshape the temporal attention with motion LoRAs so that Value embeddings can be reorganized to produce a new motion. Further, in AH, we alter the starting point of each skip connection in U-Net from the output of each temporal attention module to the output of each spatial attention module. Extensive experiments demonstrate that compared to previous works, our method can generate videos with appearance more aligned with the text descriptions and motion more consistent with the reference videos.
Abstract:How to extract significant point cloud features and estimate the pose between them remains a challenging question, due to the inherent lack of structure and ambiguous order permutation of point clouds. Despite significant improvements in applying deep learning-based methods for most 3D computer vision tasks, such as object classification, object segmentation and point cloud registration, the consistency between features is still not attractive in existing learning-based pipelines. In this paper, we present a novel learning-based alignment network for complex alignment scenes, titled deep feature consistency and consisting of three main modules: a multiscale graph feature merging network for converting the geometric correspondence set into high-dimensional features, a correspondence weighting module for constructing multiple candidate inlier subsets, and a Procrustes approach named deep feature matching for giving a closed-form solution to estimate the relative pose. As the most important step of the deep feature matching module, the feature consistency matrix for each inlier subset is constructed to obtain its principal vectors as the inlier likelihoods of the corresponding subset. We comprehensively validate the robustness and effectiveness of our approach on both the 3DMatch dataset and the KITTI odometry dataset. For large indoor scenes, registration results on the 3DMatch dataset demonstrate that our method outperforms both the state-of-the-art traditional and learning-based methods. For KITTI outdoor scenes, our approach remains quite capable of lowering the transformation errors. We also explore its strong generalization capability over cross-datasets.