Abstract:The rendering scheme in neural radiance field (NeRF) is effective in rendering a pixel by casting a ray into the scene. However, NeRF yields blurred rendering results when the training images are captured at non-uniform scales, and produces aliasing artifacts if the test images are taken in distant views. To address this issue, Mip-NeRF proposes a multiscale representation as a conical frustum to encode scale information. Nevertheless, this approach is only suitable for offline rendering since it relies on integrated positional encoding (IPE) to query a multilayer perceptron (MLP). To overcome this limitation, we propose mip voxel grids (Mip-VoG), an explicit multiscale representation with a deferred architecture for real-time anti-aliasing rendering. Our approach includes a density Mip-VoG for scene geometry and a feature Mip-VoG with a small MLP for view-dependent color. Mip-VoG encodes scene scale using the level of detail (LOD) derived from ray differentials and uses quadrilinear interpolation to map a queried 3D location to its features and density from two neighboring downsampled voxel grids. To our knowledge, our approach is the first to offer multiscale training and real-time anti-aliasing rendering simultaneously. We conducted experiments on multiscale datasets, and the results show that our approach outperforms state-of-the-art real-time rendering baselines.
Abstract:This paper studies implicit surface reconstruction leveraging differentiable ray casting. Previous works such as IDR and NeuS overlook the spatial context in 3D space when predicting and rendering the surface, thereby may fail to capture sharp local topologies such as small holes and structures. To mitigate the limitation, we propose a flexible neural implicit representation leveraging hierarchical voxel grids, namely Neural Deformable Anchor (NeuDA), for high-fidelity surface reconstruction. NeuDA maintains the hierarchical anchor grids where each vertex stores a 3D position (or anchor) instead of the direct embedding (or feature). We optimize the anchor grids such that different local geometry structures can be adaptively encoded. Besides, we dig into the frequency encoding strategies and introduce a simple hierarchical positional encoding method for the hierarchical anchor structure to flexibly exploit the properties of high-frequency and low-frequency geometry and appearance. Experiments on both the DTU and BlendedMVS datasets demonstrate that NeuDA can produce promising mesh surfaces.
Abstract:This paper studies how to flexibly integrate reconstructed 3D models into practical 3D modeling pipelines such as 3D scene creation and rendering. Due to the technical difficulty, one can only obtain rough 3D models (R3DMs) for most real objects using existing 3D reconstruction techniques. As a result, physically-based rendering (PBR) would render low-quality images or videos for scenes that are constructed by R3DMs. One promising solution would be representing real-world objects as Neural Fields such as NeRFs, which are able to generate photo-realistic renderings of an object under desired viewpoints. However, a drawback is that the synthesized views through Neural Fields Rendering (NFR) cannot reflect the simulated lighting details on R3DMs in PBR pipelines, especially when object interactions in the 3D scene creation cause local shadows. To solve this dilemma, we propose a lighting transfer network (LighTNet) to bridge NFR and PBR, such that they can benefit from each other. LighTNet reasons about a simplified image composition model, remedies the uneven surface issue caused by R3DMs, and is empowered by several perceptual-motivated constraints and a new Lab angle loss which enhances the contrast between lighting strength and colors. Comparisons demonstrate that LighTNet is superior in synthesizing impressive lighting, and is promising in pushing NFR further in practical 3D modeling workflows. Project page: https://3d-front-future.github.io/LighTNet .
Abstract:Neural Radiance Fields (NeRF) have emerged as a potent paradigm for representing scenes and synthesizing photo-realistic images. A main limitation of conventional NeRFs is that they often fail to produce high-quality renderings under novel viewpoints that are significantly different from the training viewpoints. In this paper, instead of exploiting few-shot image synthesis, we study the novel view extrapolation setting that (1) the training images can well describe an object, and (2) there is a notable discrepancy between the training and test viewpoints' distributions. We present RapNeRF (RAy Priors) as a solution. Our insight is that the inherent appearances of a 3D surface's arbitrary visible projections should be consistent. We thus propose a random ray casting policy that allows training unseen views using seen views. Furthermore, we show that a ray atlas pre-computed from the observed rays' viewing directions could further enhance the rendering quality for extrapolated views. A main limitation is that RapNeRF would remove the strong view-dependent effects because it leverages the multi-view consistency property.
Abstract:Recent advances in implicit neural representations and differentiable rendering make it possible to simultaneously recover the geometry and materials of an object from multi-view RGB images captured under unknown static illumination. Despite the promising results achieved, indirect illumination is rarely modeled in previous methods, as it requires expensive recursive path tracing which makes the inverse rendering computationally intractable. In this paper, we propose a novel approach to efficiently recovering spatially-varying indirect illumination. The key insight is that indirect illumination can be conveniently derived from the neural radiance field learned from input images instead of being estimated jointly with direct illumination and materials. By properly modeling the indirect illumination and visibility of direct illumination, interreflection- and shadow-free albedo can be recovered. The experiments on both synthetic and real data demonstrate the superior performance of our approach compared to previous work and its capability to synthesize realistic renderings under novel viewpoints and illumination. Our code and data are available at https://zju3dv.github.io/invrender/.
Abstract:Adapting semantic segmentation models to new domains is an important but challenging problem. Recently enlightening progress has been made, but the performance of existing methods are unsatisfactory on real datasets where the new target domain comprises of heterogeneous sub-domains (e.g., diverse weather characteristics). We point out that carefully reasoning about the multiple modalities in the target domain can improve the robustness of adaptation models. To this end, we propose a condition-guided adaptation framework that is empowered by a special attentive progressive adversarial training (APAT) mechanism and a novel self-training policy. The APAT strategy progressively performs condition-specific alignment and attentive global feature matching. The new self-training scheme exploits the adversarial ambivalences of easy and hard adaptation regions and the correlations among target sub-domains effectively. We evaluate our method (DCAA) on various adaptation scenarios where the target images vary in weather conditions. The comparisons against baselines and the state-of-the-art approaches demonstrate the superiority of DCAA over the competitors.
Abstract:We introduce 3D-FRONT (3D Furnished Rooms with layOuts and semaNTics), a new, large-scale, and comprehensive repository of synthetic indoor scenes highlighted by professionally designed layouts and a large number of rooms populated by high-quality textured 3D models with style compatibility. From layout semantics down to texture details of individual objects, our dataset is freely available to the academic community and beyond. Currently, 3D-FRONT contains 18,797 rooms diversely furnished by 3D objects, far surpassing all publicly available scene datasets. In addition, the 7,302 furniture objects all come with high-quality textures. While the floorplans and layout designs are directly sourced from professional creations, the interior designs in terms of furniture styles, color, and textures have been carefully curated based on a recommender system we develop to attain consistent styles as expert designs. Furthermore, we release Trescope, a light-weight rendering tool, to support benchmark rendering of 2D images and annotations from 3D-FRONT. We demonstrate two applications, interior scene synthesis and texture synthesis, that are especially tailored to the strengths of our new dataset. The project page is at: https://tianchi.aliyun.com/specials/promotion/alibaba-3d-scene-dataset.
Abstract:Image-based 3D shape retrieval (IBSR) aims to find the corresponding 3D shape of a given 2D image from a large 3D shape database. The common routine is to map 2D images and 3D shapes into an embedding space and define (or learn) a shape similarity measure. While metric learning with some adaptation techniques seems to be a natural solution to shape similarity learning, the performance is often unsatisfactory for fine-grained shape retrieval. In the paper, we identify the source of the poor performance and propose a practical solution to this problem. We find that the shape difference between a negative pair is entangled with the texture gap, making metric learning ineffective in pushing away negative pairs. To tackle this issue, we develop a geometry-focused multi-view metric learning framework empowered by texture synthesis. The synthesis of textures for 3D shape models creates hard triplets, which suppress the adverse effects of rich texture in 2D images, thereby push the network to focus more on discovering geometric characteristics. Our approach shows state-of-the-art performance on a recently released large-scale 3D-FUTURE[1] repository, as well as three widely studied benchmarks, including Pix3D[2], Stanford Cars[3], and Comp Cars[4]. Codes will be made publicly available at: https://github.com/3D-FRONT-FUTURE/IBSR-texture
Abstract:The 3D CAD shapes in current 3D benchmarks are mostly collected from online model repositories. Thus, they typically have insufficient geometric details and less informative textures, making them less attractive for comprehensive and subtle research in areas such as high-quality 3D mesh and texture recovery. This paper presents 3D Furniture shape with TextURE (3D-FUTURE): a richly-annotated and large-scale repository of 3D furniture shapes in the household scenario. At the time of this technical report, 3D-FUTURE contains 20,240 clean and realistic synthetic images of 5,000 different rooms. There are 9,992 unique detailed 3D instances of furniture with high-resolution textures. Experienced designers developed the room scenes, and the 3D CAD shapes in the scene are used for industrial production. Given the well-organized 3D-FUTURE, we provide baseline experiments on several widely studied tasks, such as joint 2D instance segmentation and 3D object pose estimation, image-based 3D shape retrieval, 3D object reconstruction from a single image, and texture recovery for 3D shapes, to facilitate related future researches on our database.
Abstract:Depth completion aims to recover a dense depth map from the sparse depth data and the corresponding single RGB image. The observed pixels provide the significant guidance for the recovery of the unobserved pixels' depth. However, due to the sparsity of the depth data, the standard convolution operation, exploited by most of existing methods, is not effective to model the observed contexts with depth values. To address this issue, we propose to adopt the graph propagation to capture the observed spatial contexts. Specifically, we first construct multiple graphs at different scales from observed pixels. Since the graph structure varies from sample to sample, we then apply the attention mechanism on the propagation, which encourages the network to model the contextual information adaptively. Furthermore, considering the mutli-modality of input data, we exploit the graph propagation on the two modalities respectively to extract multi-modal representations. Finally, we introduce the symmetric gated fusion strategy to exploit the extracted multi-modal features effectively. The proposed strategy preserves the original information for one modality and also absorbs complementary information from the other through learning the adaptive gating weights. Our model, named Adaptive Context-Aware Multi-Modal Network (ACMNet), achieves the state-of-the-art performance on two benchmarks, {\it i.e.}, KITTI and NYU-v2, and at the same time has fewer parameters than latest models. Our code is available at: \url{https://github.com/sshan-zhao/ACMNet}.