Abstract:Vision Language Models (VLMs) have achieved impressive performance in 2D image understanding, however they are still struggling with spatial understanding which is the foundation of Embodied AI. In this paper, we propose SpatialBot for better spatial understanding by feeding both RGB and depth images. Additionally, we have constructed the SpatialQA dataset, which involves multi-level depth-related questions to train VLMs for depth understanding. Finally, we present SpatialBench to comprehensively evaluate VLMs' capabilities in spatial understanding at different levels. Extensive experiments on our spatial-understanding benchmark, general VLM benchmarks and Embodied AI tasks, demonstrate the remarkable improvements of SpatialBot trained on SpatialQA. The model, code and data are available at https://github.com/BAAI-DCAI/SpatialBot.
Abstract:We present Knowledge NeRF to synthesize novel views for dynamic scenes. Reconstructing dynamic 3D scenes from few sparse views and rendering them from arbitrary perspectives is a challenging problem with applications in various domains. Previous dynamic NeRF methods learn the deformation of articulated objects from monocular videos. However, qualities of their reconstructed scenes are limited. To clearly reconstruct dynamic scenes, we propose a new framework by considering two frames at a time.We pretrain a NeRF model for an articulated object.When articulated objects moves, Knowledge NeRF learns to generate novel views at the new state by incorporating past knowledge in the pretrained NeRF model with minimal observations in the present state. We propose a projection module to adapt NeRF for dynamic scenes, learning the correspondence between pretrained knowledge base and current states. Experimental results demonstrate the effectiveness of our method in reconstructing dynamic 3D scenes with 5 input images in one state. Knowledge NeRF is a new pipeline and promising solution for novel view synthesis in dynamic articulated objects. The data and implementation are publicly available at https://github.com/RussRobin/Knowledge_NeRF.
Abstract:The topic of stitching images with globally natural structures holds paramount significance. Current methodologies exhibit the ability to preserve local geometric structures, yet fall short in maintaining relationships between these geometric structures. In this paper, we endeavor to safeguard the overall, OBJect-level structures within images based on Global Similarity Prior, while concurrently mitigating distortion and ghosting artifacts with OBJ-GSP. Our approach leverages the Segment Anything Model to extract geometric structures with semantic information, enhancing the algorithm's ability to preserve objects in a manner that aligns more intuitively with human perception. We seek to identify spatial constraints that govern the relationships between various geometric boundaries. Recognizing that multiple geometric boundaries collectively define complete objects, we employ triangular meshes to safeguard not only individual geometric structures but also the overall shapes of objects within the images. Empirical evaluations across multiple image stitching datasets demonstrate that our method establishes a new state-of-the-art benchmark in image stitching. Our implementation and dataset is publicly available at https://github.com/RussRobin/OBJ-GSP .
Abstract:Semantic segmentation of drone images is critical to many aerial vision tasks as it provides essential semantic details that can compensate for the lack of depth information from monocular cameras. However, maintaining high accuracy of semantic segmentation models for drones requires diverse, large-scale, and high-resolution datasets, which are rare in the field of aerial image processing. Existing datasets are typically small and focus primarily on urban scenes, neglecting rural and industrial areas. Models trained on such datasets are not sufficiently equipped to handle the variety of inputs seen in drone imagery. In the VDD-Varied Drone Dataset, we offer a large-scale and densely labeled dataset comprising 400 high-resolution images that feature carefully chosen scenes, camera angles, and varied light and weather conditions. Furthermore, we have adapted existing drone datasets to conform to our annotation standards and integrated them with VDD to create a dataset 1.5 times the size of fine annotation of Cityscapes. We have developed a novel DeepLabT model, which combines CNN and Transformer backbones, to provide a reliable baseline for semantic segmentation in drone imagery. Our experiments indicate that DeepLabT performs admirably on VDD and other drone datasets. We expect that our dataset will generate considerable interest in drone image segmentation and serve as a foundation for other drone vision tasks. VDD is freely available on our website at https://vddvdd.com .