Abstract:Graph neural networks (GNNs) have been widely applied in traffic demand prediction, and transportation modes can be divided into station-based mode and free-floating traffic mode. Existing research in traffic graph construction primarily relies on map matching to construct graphs based on the road network. However, the complexity and inhomogeneity of data distribution in free-floating traffic demand forecasting make road network matching inflexible. To tackle these challenges, this paper introduces a novel graph construction method tailored to free-floating traffic mode. We propose a novel density-based clustering algorithm (HDPC-L) to determine the flexible positioning of nodes in the graph, overcoming the computational bottlenecks of traditional clustering algorithms and enabling effective handling of large-scale datasets. Furthermore, we extract valuable information from ridership data to initialize the edge weights of GNNs. Comprehensive experiments on two real-world datasets, the Shenzhen bike-sharing dataset and the Haikou ride-hailing dataset, show that the method significantly improves the performance of the model. On average, our models show an improvement in accuracy of around 25\% and 19.5\% on the two datasets. Additionally, it significantly enhances computational efficiency, reducing training time by approximately 12% and 32.5% on the two datasets. We make our code available at https://github.com/houjinyan/HDPC-L-ODInit.
Abstract:Semantic segmentation of drone images is critical to many aerial vision tasks as it provides essential semantic details that can compensate for the lack of depth information from monocular cameras. However, maintaining high accuracy of semantic segmentation models for drones requires diverse, large-scale, and high-resolution datasets, which are rare in the field of aerial image processing. Existing datasets are typically small and focus primarily on urban scenes, neglecting rural and industrial areas. Models trained on such datasets are not sufficiently equipped to handle the variety of inputs seen in drone imagery. In the VDD-Varied Drone Dataset, we offer a large-scale and densely labeled dataset comprising 400 high-resolution images that feature carefully chosen scenes, camera angles, and varied light and weather conditions. Furthermore, we have adapted existing drone datasets to conform to our annotation standards and integrated them with VDD to create a dataset 1.5 times the size of fine annotation of Cityscapes. We have developed a novel DeepLabT model, which combines CNN and Transformer backbones, to provide a reliable baseline for semantic segmentation in drone imagery. Our experiments indicate that DeepLabT performs admirably on VDD and other drone datasets. We expect that our dataset will generate considerable interest in drone image segmentation and serve as a foundation for other drone vision tasks. VDD is freely available on our website at https://vddvdd.com .