Abstract:Visual actionable affordance has emerged as a transformative approach in robotics, focusing on perceiving interaction areas prior to manipulation. Traditional methods rely on pixel sampling to identify successful interaction samples or processing pointclouds for affordance mapping. However, these approaches are computationally intensive and struggle to adapt to diverse and dynamic environments. This paper introduces ManipGPT, a framework designed to predict optimal interaction areas for articulated objects using a large pre-trained vision transformer (ViT). We created a dataset of 9.9k simulated and real images to bridge the sim-to-real gap and enhance real-world applicability. By fine-tuning the vision transformer on this small dataset, we significantly improved part-level affordance segmentation, adapting the model's in-context segmentation capabilities to robot manipulation scenarios. This enables effective manipulation across simulated and real-world environments by generating part-level affordance masks, paired with an impedance adaptation policy, sufficiently eliminating the need for complex datasets or perception systems.
Abstract:Recently, the concept of embodied intelligence has been widely accepted and popularized, leading people to naturally consider the potential for commercialization in this field. In this work, we propose a specific commercial scenario simulation, human-centered in-building embodied delivery. Furthermore, for this scenario, we have developed a brand-new virtual environment system from scratch, constructing a multi-level connected building space modeled after a polar research station. This environment also includes autonomous human characters and robots with grasping and mobility capabilities, as well as a large number of interactive items. Based on this environment, we have built a delivery dataset containing 13k language instructions to guide robots in providing services. We simulate human behavior through human characters and sample their various needs in daily life. Finally, we proposed a method centered around a large multimodal model to serve as the baseline system for this dataset. Compared to past embodied data work, our work focuses on a virtual environment centered around human-robot interaction for commercial scenarios. We believe this will bring new perspectives and exploration angles to the embodied community.
Abstract:Vision Language Models (VLMs) have achieved impressive performance in 2D image understanding, however they are still struggling with spatial understanding which is the foundation of Embodied AI. In this paper, we propose SpatialBot for better spatial understanding by feeding both RGB and depth images. Additionally, we have constructed the SpatialQA dataset, which involves multi-level depth-related questions to train VLMs for depth understanding. Finally, we present SpatialBench to comprehensively evaluate VLMs' capabilities in spatial understanding at different levels. Extensive experiments on our spatial-understanding benchmark, general VLM benchmarks and Embodied AI tasks, demonstrate the remarkable improvements of SpatialBot trained on SpatialQA. The model, code and data are available at https://github.com/BAAI-DCAI/SpatialBot.
Abstract:The ability to reflect on and correct failures is crucial for robotic systems to interact stably with real-life objects.Observing the generalization and reasoning capabilities of Multimodal Large Language Models (MLLMs), previous approaches have aimed to utilize these models to enhance robotic systems accordingly.However, these methods typically focus on high-level planning corrections using an additional MLLM, with limited utilization of failed samples to correct low-level contact poses. To address this gap, we propose an Autonomous Interactive Correction (AIC) MLLM, which makes use of previous low-level interaction experiences to correct SE(3) pose predictions. Specifically, AIC MLLM is initially fine-tuned to acquire both pose prediction and feedback prompt comprehension abilities.We carefully design two types of prompt instructions through interactions with objects: 1) visual masks to highlight unmovable parts for position correction, and 2)textual descriptions to indicate potential directions for rotation correction.During inference, a Feedback Information Extraction module is introduced to recognize the failure cause, allowing AIC MLLM to adaptively correct the pose prediction using the corresponding prompts.To further enhance manipulation stability, we devise a Test Time Adaptation strategy that enables AIC MLLM to better adapt to the current scene configuration.Finally, extensive experiments are conducted in both simulated and real-world environments to evaluate the proposed method. The results demonstrate that our AIC MLLM can efficiently correct failure samples by leveraging interaction experience prompts.Real-world demonstration can be found at https://sites.google.com/view/aic-mllm
Abstract:The openness and transparency of Ethereum transaction data make it easy to be exploited by any entities, executing malicious attacks. The sandwich attack manipulates the Automated Market Maker (AMM) mechanism, profiting from manipulating the market price through front or after-running transactions. To identify and prevent sandwich attacks, we propose a cascade classification framework GasTrace. GasTrace analyzes various transaction features to detect malicious accounts, notably through the analysis and modeling of Gas features. In the initial classification, we utilize the Support Vector Machine (SVM) with the Radial Basis Function (RBF) kernel to generate the predicted probabilities of accounts, further constructing a detailed transaction network. Subsequently, the behavior features are captured by the Graph Attention Network (GAT) technique in the second classification. Through cascade classification, GasTrace can analyze and classify the sandwich attacks. Our experimental results demonstrate that GasTrace achieves a remarkable detection and generation capability, performing an accuracy of 96.73\% and an F1 score of 95.71\% for identifying sandwich attack accounts.
Abstract:The integration of Multimodal Large Language Models (MLLMs) with robotic systems has significantly enhanced the ability of robots to interpret and act upon natural language instructions. Despite these advancements, conventional MLLMs are typically trained on generic image-text pairs, lacking essential robotics knowledge such as affordances and physical knowledge, which hampers their efficacy in manipulation tasks. To bridge this gap, we introduce ManipVQA, a novel framework designed to endow MLLMs with Manipulation-centric knowledge through a Visual Question-Answering format. This approach not only encompasses tool detection and affordance recognition but also extends to a comprehensive understanding of physical concepts. Our approach starts with collecting a varied set of images displaying interactive objects, which presents a broad range of challenges in tool object detection, affordance, and physical concept predictions. To seamlessly integrate this robotic-specific knowledge with the inherent vision-reasoning capabilities of MLLMs, we adopt a unified VQA format and devise a fine-tuning strategy that preserves the original vision-reasoning abilities while incorporating the new robotic insights. Empirical evaluations conducted in robotic simulators and across various vision task benchmarks demonstrate the robust performance of ManipVQA. Code and dataset will be made publicly available at https://github.com/SiyuanHuang95/ManipVQA.
Abstract:Enabling home-assistant robots to perceive and manipulate a diverse range of 3D objects based on human language instructions is a pivotal challenge. Prior research has predominantly focused on simplistic and task-oriented instructions, i.e., "Slide the top drawer open". However, many real-world tasks demand intricate multi-step reasoning, and without human instructions, these will become extremely difficult for robot manipulation. To address these challenges, we introduce a comprehensive benchmark, NrVLM, comprising 15 distinct manipulation tasks, containing over 4500 episodes meticulously annotated with fine-grained language instructions. We split the long-term task process into several steps, with each step having a natural language instruction. Moreover, we propose a novel learning framework that completes the manipulation task step-by-step according to the fine-grained instructions. Specifically, we first identify the instruction to execute, taking into account visual observations and the end-effector's current state. Subsequently, our approach facilitates explicit learning through action-prompts and perception-prompts to promote manipulation-aware cross-modality alignment. Leveraging both visual observations and linguistic guidance, our model outputs a sequence of actionable predictions for manipulation, including contact points and end-effector poses. We evaluate our method and baselines using the proposed benchmark NrVLM. The experimental results demonstrate the effectiveness of our approach. For additional details, please refer to https://sites.google.com/view/naturalvlm.
Abstract:Robot manipulation relies on accurately predicting contact points and end-effector directions to ensure successful operation. However, learning-based robot manipulation, trained on a limited category within a simulator, often struggles to achieve generalizability, especially when confronted with extensive categories. Therefore, we introduce an innovative approach for robot manipulation that leverages the robust reasoning capabilities of Multimodal Large Language Models (MLLMs) to enhance the stability and generalization of manipulation. By fine-tuning the injected adapters, we preserve the inherent common sense and reasoning ability of the MLLMs while equipping them with the ability for manipulation. The fundamental insight lies in the introduced fine-tuning paradigm, encompassing object category understanding, affordance prior reasoning, and object-centric pose prediction to stimulate the reasoning ability of MLLM in manipulation. During inference, our approach utilizes an RGB image and text prompt to predict the end effector's pose in chain of thoughts. After the initial contact is established, an active impedance adaptation policy is introduced to plan the upcoming waypoints in a closed-loop manner. Moreover, in real world, we design a test-time adaptation (TTA) strategy for manipulation to enable the model better adapt to the current real-world scene configuration. Experiments in simulator and real-world show the promising performance of ManipLLM. More details and demonstrations can be found at https://sites.google.com/view/manipllm.
Abstract:Recently, Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) have shown promise in instruction following and 2D image understanding. While these models are powerful, they have not yet been developed to comprehend the more challenging 3D physical scenes, especially when it comes to the sparse outdoor LiDAR data. In this paper, we introduce LiDAR-LLM, which takes raw LiDAR data as input and harnesses the remarkable reasoning capabilities of LLMs to gain a comprehensive understanding of outdoor 3D scenes. The central insight of our LiDAR-LLM is the reformulation of 3D outdoor scene cognition as a language modeling problem, encompassing tasks such as 3D captioning, 3D grounding, 3D question answering, etc. Specifically, due to the scarcity of 3D LiDAR-text pairing data, we introduce a three-stage training strategy and generate relevant datasets, progressively aligning the 3D modality with the language embedding space of LLM. Furthermore, we design a View-Aware Transformer (VAT) to connect the 3D encoder with the LLM, which effectively bridges the modality gap and enhances the LLM's spatial orientation comprehension of visual features. Our experiments show that LiDAR-LLM possesses favorable capabilities to comprehend various instructions regarding 3D scenes and engage in complex spatial reasoning. LiDAR-LLM attains a 40.9 BLEU-1 on the 3D captioning task and achieves a 63.1\% classification accuracy and a 14.3\% BEV mIoU on the 3D grounding task. Web page: https://sites.google.com/view/lidar-llm
Abstract:In the realm of future home-assistant robots, 3D articulated object manipulation is essential for enabling robots to interact with their environment. Many existing studies make use of 3D point clouds as the primary input for manipulation policies. However, this approach encounters challenges due to data sparsity and the significant cost associated with acquiring point cloud data, which can limit its practicality. In contrast, RGB images offer high-resolution observations using cost effective devices but lack spatial 3D geometric information. To overcome these limitations, we present a novel image-based robotic manipulation framework. This framework is designed to capture multiple perspectives of the target object and infer depth information to complement its geometry. Initially, the system employs an eye-on-hand RGB camera to capture an overall view of the target object. It predicts the initial depth map and a coarse affordance map. The affordance map indicates actionable areas on the object and serves as a constraint for selecting subsequent viewpoints. Based on the global visual prior, we adaptively identify the optimal next viewpoint for a detailed observation of the potential manipulation success area. We leverage geometric consistency to fuse the views, resulting in a refined depth map and a more precise affordance map for robot manipulation decisions. By comparing with prior works that adopt point clouds or RGB images as inputs, we demonstrate the effectiveness and practicality of our method. In the project webpage (https://sites.google.com/view/imagemanip), real world experiments further highlight the potential of our method for practical deployment.