Abstract:Visual actionable affordance has emerged as a transformative approach in robotics, focusing on perceiving interaction areas prior to manipulation. Traditional methods rely on pixel sampling to identify successful interaction samples or processing pointclouds for affordance mapping. However, these approaches are computationally intensive and struggle to adapt to diverse and dynamic environments. This paper introduces ManipGPT, a framework designed to predict optimal interaction areas for articulated objects using a large pre-trained vision transformer (ViT). We created a dataset of 9.9k simulated and real images to bridge the sim-to-real gap and enhance real-world applicability. By fine-tuning the vision transformer on this small dataset, we significantly improved part-level affordance segmentation, adapting the model's in-context segmentation capabilities to robot manipulation scenarios. This enables effective manipulation across simulated and real-world environments by generating part-level affordance masks, paired with an impedance adaptation policy, sufficiently eliminating the need for complex datasets or perception systems.
Abstract:The integration of Multimodal Large Language Models (MLLMs) with robotic systems has significantly enhanced the ability of robots to interpret and act upon natural language instructions. Despite these advancements, conventional MLLMs are typically trained on generic image-text pairs, lacking essential robotics knowledge such as affordances and physical knowledge, which hampers their efficacy in manipulation tasks. To bridge this gap, we introduce ManipVQA, a novel framework designed to endow MLLMs with Manipulation-centric knowledge through a Visual Question-Answering format. This approach not only encompasses tool detection and affordance recognition but also extends to a comprehensive understanding of physical concepts. Our approach starts with collecting a varied set of images displaying interactive objects, which presents a broad range of challenges in tool object detection, affordance, and physical concept predictions. To seamlessly integrate this robotic-specific knowledge with the inherent vision-reasoning capabilities of MLLMs, we adopt a unified VQA format and devise a fine-tuning strategy that preserves the original vision-reasoning abilities while incorporating the new robotic insights. Empirical evaluations conducted in robotic simulators and across various vision task benchmarks demonstrate the robust performance of ManipVQA. Code and dataset will be made publicly available at https://github.com/SiyuanHuang95/ManipVQA.