Abstract:Visual actionable affordance has emerged as a transformative approach in robotics, focusing on perceiving interaction areas prior to manipulation. Traditional methods rely on pixel sampling to identify successful interaction samples or processing pointclouds for affordance mapping. However, these approaches are computationally intensive and struggle to adapt to diverse and dynamic environments. This paper introduces ManipGPT, a framework designed to predict optimal interaction areas for articulated objects using a large pre-trained vision transformer (ViT). We created a dataset of 9.9k simulated and real images to bridge the sim-to-real gap and enhance real-world applicability. By fine-tuning the vision transformer on this small dataset, we significantly improved part-level affordance segmentation, adapting the model's in-context segmentation capabilities to robot manipulation scenarios. This enables effective manipulation across simulated and real-world environments by generating part-level affordance masks, paired with an impedance adaptation policy, sufficiently eliminating the need for complex datasets or perception systems.
Abstract:Recent advancements in image captioning have explored text-only training methods to overcome the limitations of paired image-text data. However, existing text-only training methods often overlook the modality gap between using text data during training and employing images during inference. To address this issue, we propose a novel approach called Image-like Retrieval, which aligns text features with visually relevant features to mitigate the modality gap. Our method further enhances the accuracy of generated captions by designing a Fusion Module that integrates retrieved captions with input features. Additionally, we introduce a Frequency-based Entity Filtering technique that significantly improves caption quality. We integrate these methods into a unified framework, which we refer to as IFCap ($\textbf{I}$mage-like Retrieval and $\textbf{F}$requency-based Entity Filtering for Zero-shot $\textbf{Cap}$tioning). Through extensive experimentation, our straightforward yet powerful approach has demonstrated its efficacy, outperforming the state-of-the-art methods by a significant margin in both image captioning and video captioning compared to zero-shot captioning based on text-only training.