Abstract:Recent advancements in image captioning have explored text-only training methods to overcome the limitations of paired image-text data. However, existing text-only training methods often overlook the modality gap between using text data during training and employing images during inference. To address this issue, we propose a novel approach called Image-like Retrieval, which aligns text features with visually relevant features to mitigate the modality gap. Our method further enhances the accuracy of generated captions by designing a Fusion Module that integrates retrieved captions with input features. Additionally, we introduce a Frequency-based Entity Filtering technique that significantly improves caption quality. We integrate these methods into a unified framework, which we refer to as IFCap ($\textbf{I}$mage-like Retrieval and $\textbf{F}$requency-based Entity Filtering for Zero-shot $\textbf{Cap}$tioning). Through extensive experimentation, our straightforward yet powerful approach has demonstrated its efficacy, outperforming the state-of-the-art methods by a significant margin in both image captioning and video captioning compared to zero-shot captioning based on text-only training.
Abstract:We introduce HyperCLOVA X, a family of large language models (LLMs) tailored to the Korean language and culture, along with competitive capabilities in English, math, and coding. HyperCLOVA X was trained on a balanced mix of Korean, English, and code data, followed by instruction-tuning with high-quality human-annotated datasets while abiding by strict safety guidelines reflecting our commitment to responsible AI. The model is evaluated across various benchmarks, including comprehensive reasoning, knowledge, commonsense, factuality, coding, math, chatting, instruction-following, and harmlessness, in both Korean and English. HyperCLOVA X exhibits strong reasoning capabilities in Korean backed by a deep understanding of the language and cultural nuances. Further analysis of the inherent bilingual nature and its extension to multilingualism highlights the model's cross-lingual proficiency and strong generalization ability to untargeted languages, including machine translation between several language pairs and cross-lingual inference tasks. We believe that HyperCLOVA X can provide helpful guidance for regions or countries in developing their sovereign LLMs.