Abstract:Manipulating garments and fabrics has long been a critical endeavor in the development of home-assistant robots. However, due to complex dynamics and topological structures, garment manipulations pose significant challenges. Recent successes in reinforcement learning and vision-based methods offer promising avenues for learning garment manipulation. Nevertheless, these approaches are severely constrained by current benchmarks, which offer limited diversity of tasks and unrealistic simulation behavior. Therefore, we present GarmentLab, a content-rich benchmark and realistic simulation designed for deformable object and garment manipulation. Our benchmark encompasses a diverse range of garment types, robotic systems and manipulators. The abundant tasks in the benchmark further explores of the interactions between garments, deformable objects, rigid bodies, fluids, and human body. Moreover, by incorporating multiple simulation methods such as FEM and PBD, along with our proposed sim-to-real algorithms and real-world benchmark, we aim to significantly narrow the sim-to-real gap. We evaluate state-of-the-art vision methods, reinforcement learning, and imitation learning approaches on these tasks, highlighting the challenges faced by current algorithms, notably their limited generalization capabilities. Our proposed open-source environments and comprehensive analysis show promising boost to future research in garment manipulation by unlocking the full potential of these methods. We guarantee that we will open-source our code as soon as possible. You can watch the videos in supplementary files to learn more about the details of our work. Our project page is available at: https://garmentlab.github.io/
Abstract:In our daily life, cluttered objects are everywhere, from scattered stationery and books cluttering the table to bowls and plates filling the kitchen sink. Retrieving a target object from clutters is an essential while challenging skill for robots, for the difficulty of safely manipulating an object without disturbing others, which requires the robot to plan a manipulation sequence and first move away a few other objects supported by the target object step by step. However, due to the diversity of object configurations (e.g., categories, geometries, locations and poses) and their combinations in clutters, it is difficult for a robot to accurately infer the support relations between objects faraway with various objects in between. In this paper, we study retrieving objects in complicated clutters via a novel method of recursively broadcasting the accurate local dynamics to build a support relation graph of the whole scene, which largely reduces the complexity of the support relation inference and improves the accuracy. Experiments in both simulation and the real world demonstrate the efficiency and effectiveness of our method.
Abstract:Enabling home-assistant robots to perceive and manipulate a diverse range of 3D objects based on human language instructions is a pivotal challenge. Prior research has predominantly focused on simplistic and task-oriented instructions, i.e., "Slide the top drawer open". However, many real-world tasks demand intricate multi-step reasoning, and without human instructions, these will become extremely difficult for robot manipulation. To address these challenges, we introduce a comprehensive benchmark, NrVLM, comprising 15 distinct manipulation tasks, containing over 4500 episodes meticulously annotated with fine-grained language instructions. We split the long-term task process into several steps, with each step having a natural language instruction. Moreover, we propose a novel learning framework that completes the manipulation task step-by-step according to the fine-grained instructions. Specifically, we first identify the instruction to execute, taking into account visual observations and the end-effector's current state. Subsequently, our approach facilitates explicit learning through action-prompts and perception-prompts to promote manipulation-aware cross-modality alignment. Leveraging both visual observations and linguistic guidance, our model outputs a sequence of actionable predictions for manipulation, including contact points and end-effector poses. We evaluate our method and baselines using the proposed benchmark NrVLM. The experimental results demonstrate the effectiveness of our approach. For additional details, please refer to https://sites.google.com/view/naturalvlm.
Abstract:Domain adversarial adaptation in a continual setting poses a significant challenge due to the limitations on accessing previous source domain data. Despite extensive research in continual learning, the task of adversarial adaptation cannot be effectively accomplished using only a small number of stored source domain data, which is a standard setting in memory replay approaches. This limitation arises from the erroneous empirical estimation of $\gH$-divergence with few source domain samples. To tackle this problem, we propose a double-head discriminator algorithm, by introducing an addition source-only domain discriminator that are trained solely on source learning phase. We prove that with the introduction of a pre-trained source-only domain discriminator, the empirical estimation error of $\gH$-divergence related adversarial loss is reduced from the source domain side. Further experiments on existing domain adaptation benchmark show that our proposed algorithm achieves more than 2$\%$ improvement on all categories of target domain adaptation task while significantly mitigating the forgetting on source domain.
Abstract:Robot manipulation relies on accurately predicting contact points and end-effector directions to ensure successful operation. However, learning-based robot manipulation, trained on a limited category within a simulator, often struggles to achieve generalizability, especially when confronted with extensive categories. Therefore, we introduce an innovative approach for robot manipulation that leverages the robust reasoning capabilities of Multimodal Large Language Models (MLLMs) to enhance the stability and generalization of manipulation. By fine-tuning the injected adapters, we preserve the inherent common sense and reasoning ability of the MLLMs while equipping them with the ability for manipulation. The fundamental insight lies in the introduced fine-tuning paradigm, encompassing object category understanding, affordance prior reasoning, and object-centric pose prediction to stimulate the reasoning ability of MLLM in manipulation. During inference, our approach utilizes an RGB image and text prompt to predict the end effector's pose in chain of thoughts. After the initial contact is established, an active impedance adaptation policy is introduced to plan the upcoming waypoints in a closed-loop manner. Moreover, in real world, we design a test-time adaptation (TTA) strategy for manipulation to enable the model better adapt to the current real-world scene configuration. Experiments in simulator and real-world show the promising performance of ManipLLM. More details and demonstrations can be found at https://sites.google.com/view/manipllm.
Abstract:Articulated objects (e.g., doors and drawers) exist everywhere in our life. Different from rigid objects, articulated objects have higher degrees of freedom and are rich in geometries, semantics, and part functions. Modeling different kinds of parts and articulations with nerual networks plays an essential role in articulated object understanding and manipulation, and will further benefit 3D vision and robotics communities. To model articulated objects, most previous works directly encode articulated objects into feature representations, without specific designs for parts, articulations and part motions. In this paper, we introduce a novel framework that explicitly disentangles the part motion of articulated objects by predicting the transformation matrix of points on the part surface, using spatially continuous neural implicit representations to model the part motion smoothly in the space. More importantly, while many methods could only model a certain kind of joint motion (such as the revolution in the clockwise order), our proposed framework is generic to different kinds of joint motions in that transformation matrix can model diverse kinds of joint motions in the space. Quantitative and qualitative results of experiments over diverse categories of articulated objects demonstrate the effectiveness of our proposed framework.
Abstract:Graph Neural Network (GNN) is the trending solution for item retrieval in recommendation problems. Most recent reports, however, focus heavily on new model architectures. This may bring some gaps when applying GNN in the industrial setup, where, besides the model, constructing the graph and handling data sparsity also play critical roles in the overall success of the project. In this work, we report how GNN is applied for large-scale e-commerce item retrieval at Shopee. We introduce our simple yet novel and impactful techniques in graph construction, modeling, and handling data skewness. Specifically, we construct high-quality item graphs by combining strong-signal user behaviors with high-precision collaborative filtering (CF) algorithm. We then develop a new GNN architecture named LightSAGE to produce high-quality items' embeddings for vector search. Finally, we design multiple strategies to handle cold-start and long-tail items, which are critical in an advertisement (ads) system. Our models bring improvement in offline evaluations, online A/B tests, and are deployed to the main traffic of Shopee's Recommendation Advertisement system.
Abstract:In the realm of future home-assistant robots, 3D articulated object manipulation is essential for enabling robots to interact with their environment. Many existing studies make use of 3D point clouds as the primary input for manipulation policies. However, this approach encounters challenges due to data sparsity and the significant cost associated with acquiring point cloud data, which can limit its practicality. In contrast, RGB images offer high-resolution observations using cost effective devices but lack spatial 3D geometric information. To overcome these limitations, we present a novel image-based robotic manipulation framework. This framework is designed to capture multiple perspectives of the target object and infer depth information to complement its geometry. Initially, the system employs an eye-on-hand RGB camera to capture an overall view of the target object. It predicts the initial depth map and a coarse affordance map. The affordance map indicates actionable areas on the object and serves as a constraint for selecting subsequent viewpoints. Based on the global visual prior, we adaptively identify the optimal next viewpoint for a detailed observation of the potential manipulation success area. We leverage geometric consistency to fuse the views, resulting in a refined depth map and a more precise affordance map for robot manipulation decisions. By comparing with prior works that adopt point clouds or RGB images as inputs, we demonstrate the effectiveness and practicality of our method. In the project webpage (https://sites.google.com/view/imagemanip), real world experiments further highlight the potential of our method for practical deployment.
Abstract:Perceiving and manipulating 3D articulated objects in diverse environments is essential for home-assistant robots. Recent studies have shown that point-level affordance provides actionable priors for downstream manipulation tasks. However, existing works primarily focus on single-object scenarios with homogeneous agents, overlooking the realistic constraints imposed by the environment and the agent's morphology, e.g., occlusions and physical limitations. In this paper, we propose an environment-aware affordance framework that incorporates both object-level actionable priors and environment constraints. Unlike object-centric affordance approaches, learning environment-aware affordance faces the challenge of combinatorial explosion due to the complexity of various occlusions, characterized by their quantities, geometries, positions and poses. To address this and enhance data efficiency, we introduce a novel contrastive affordance learning framework capable of training on scenes containing a single occluder and generalizing to scenes with complex occluder combinations. Experiments demonstrate the effectiveness of our proposed approach in learning affordance considering environment constraints. Project page at https://chengkaiacademycity.github.io/EnvAwareAfford/
Abstract:Lung nodule malignancy prediction has been enhanced by advanced deep-learning techniques and effective tricks. Nevertheless, current methods are mainly trained with cross-entropy loss using one-hot categorical labels, which results in difficulty in distinguishing those nodules with closer progression labels. Interestingly, we observe that clinical text information annotated by radiologists provides us with discriminative knowledge to identify challenging samples. Drawing on the capability of the contrastive language-image pre-training (CLIP) model to learn generalized visual representations from text annotations, in this paper, we propose CLIP-Lung, a textual knowledge-guided framework for lung nodule malignancy prediction. First, CLIP-Lung introduces both class and attribute annotations into the training of the lung nodule classifier without any additional overheads in inference. Second, we designed a channel-wise conditional prompt (CCP) module to establish consistent relationships between learnable context prompts and specific feature maps. Third, we align image features with both class and attribute features via contrastive learning, rectifying false positives and false negatives in latent space. The experimental results on the benchmark LIDC-IDRI dataset have demonstrated the superiority of CLIP-Lung, both in classification performance and interpretability of attention maps.