Abstract:3D Vision-Language Pre-training (3D-VLP) aims to provide a pre-train model which can bridge 3D scenes with natural language, which is an important technique for embodied intelligence. However, current 3D-VLP datasets are hindered by limited scene-level diversity and insufficient fine-grained annotations (only 1.2K scenes and 280K textual annotations in ScanScribe), primarily due to the labor-intensive of collecting and annotating 3D scenes. To overcome these obstacles, we construct SynVL3D, a comprehensive synthetic scene-text corpus with 10K indoor scenes and 1M descriptions at object, view, and room levels, which has the advantages of diverse scene data, rich textual descriptions, multi-grained 3D-text associations, and low collection cost. Utilizing the rich annotations in SynVL3D, we pre-train a simple and unified Transformer for aligning 3D and language with multi-grained pretraining tasks. Moreover, we propose a synthetic-to-real domain adaptation in downstream task fine-tuning process to address the domain shift. Through extensive experiments, we verify the effectiveness of our model design by achieving state-of-the-art performance on downstream tasks including visual grounding, dense captioning, and question answering.
Abstract:How to extract significant point cloud features and estimate the pose between them remains a challenging question, due to the inherent lack of structure and ambiguous order permutation of point clouds. Despite significant improvements in applying deep learning-based methods for most 3D computer vision tasks, such as object classification, object segmentation and point cloud registration, the consistency between features is still not attractive in existing learning-based pipelines. In this paper, we present a novel learning-based alignment network for complex alignment scenes, titled deep feature consistency and consisting of three main modules: a multiscale graph feature merging network for converting the geometric correspondence set into high-dimensional features, a correspondence weighting module for constructing multiple candidate inlier subsets, and a Procrustes approach named deep feature matching for giving a closed-form solution to estimate the relative pose. As the most important step of the deep feature matching module, the feature consistency matrix for each inlier subset is constructed to obtain its principal vectors as the inlier likelihoods of the corresponding subset. We comprehensively validate the robustness and effectiveness of our approach on both the 3DMatch dataset and the KITTI odometry dataset. For large indoor scenes, registration results on the 3DMatch dataset demonstrate that our method outperforms both the state-of-the-art traditional and learning-based methods. For KITTI outdoor scenes, our approach remains quite capable of lowering the transformation errors. We also explore its strong generalization capability over cross-datasets.