Abstract:This paper introduces JuDGE (Judgment Document Generation Evaluation), a novel benchmark for evaluating the performance of judgment document generation in the Chinese legal system. We define the task as generating a complete legal judgment document from the given factual description of the case. To facilitate this benchmark, we construct a comprehensive dataset consisting of factual descriptions from real legal cases, paired with their corresponding full judgment documents, which serve as the ground truth for evaluating the quality of generated documents. This dataset is further augmented by two external legal corpora that provide additional legal knowledge for the task: one comprising statutes and regulations, and the other consisting of a large collection of past judgment documents. In collaboration with legal professionals, we establish a comprehensive automated evaluation framework to assess the quality of generated judgment documents across various dimensions. We evaluate various baseline approaches, including few-shot in-context learning, fine-tuning, and a multi-source retrieval-augmented generation (RAG) approach, using both general and legal-domain LLMs. The experimental results demonstrate that, while RAG approaches can effectively improve performance in this task, there is still substantial room for further improvement. All the codes and datasets are available at: https://github.com/oneal2000/JuDGE.
Abstract:Retrieval-augmented generation (RAG) has proven highly effective in improving large language models (LLMs) across various domains. However, there is no benchmark specifically designed to assess the effectiveness of RAG in the legal domain, which restricts progress in this area. To fill this gap, we propose LexRAG, the first benchmark to evaluate RAG systems for multi-turn legal consultations. LexRAG consists of 1,013 multi-turn dialogue samples and 17,228 candidate legal articles. Each sample is annotated by legal experts and consists of five rounds of progressive questioning. LexRAG includes two key tasks: (1) Conversational knowledge retrieval, requiring accurate retrieval of relevant legal articles based on multi-turn context. (2) Response generation, focusing on producing legally sound answers. To ensure reliable reproducibility, we develop LexiT, a legal RAG toolkit that provides a comprehensive implementation of RAG system components tailored for the legal domain. Additionally, we introduce an LLM-as-a-judge evaluation pipeline to enable detailed and effective assessment. Through experimental analysis of various LLMs and retrieval methods, we reveal the key limitations of existing RAG systems in handling legal consultation conversations. LexRAG establishes a new benchmark for the practical application of RAG systems in the legal domain, with its code and data available at https://github.com/CSHaitao/LexRAG.
Abstract:Legal case documents play a critical role in judicial proceedings. As the number of cases continues to rise, the reliance on manual drafting of legal case documents is facing increasing pressure and challenges. The development of large language models (LLMs) offers a promising solution for automating document generation. However, existing benchmarks fail to fully capture the complexities involved in drafting legal case documents in real-world scenarios. To address this gap, we introduce CaseGen, the benchmark for multi-stage legal case documents generation in the Chinese legal domain. CaseGen is based on 500 real case samples annotated by legal experts and covers seven essential case sections. It supports four key tasks: drafting defense statements, writing trial facts, composing legal reasoning, and generating judgment results. To the best of our knowledge, CaseGen is the first benchmark designed to evaluate LLMs in the context of legal case document generation. To ensure an accurate and comprehensive evaluation, we design the LLM-as-a-judge evaluation framework and validate its effectiveness through human annotations. We evaluate several widely used general-domain LLMs and legal-specific LLMs, highlighting their limitations in case document generation and pinpointing areas for potential improvement. This work marks a step toward a more effective framework for automating legal case documents drafting, paving the way for the reliable application of AI in the legal field. The dataset and code are publicly available at https://github.com/CSHaitao/CaseGen.
Abstract:With the increasing intelligence and autonomy of LLM agents, their potential applications in the legal domain are becoming increasingly apparent. However, existing general-domain benchmarks cannot fully capture the complexity and subtle nuances of real-world judicial cognition and decision-making. Therefore, we propose LegalAgentBench, a comprehensive benchmark specifically designed to evaluate LLM Agents in the Chinese legal domain. LegalAgentBench includes 17 corpora from real-world legal scenarios and provides 37 tools for interacting with external knowledge. We designed a scalable task construction framework and carefully annotated 300 tasks. These tasks span various types, including multi-hop reasoning and writing, and range across different difficulty levels, effectively reflecting the complexity of real-world legal scenarios. Moreover, beyond evaluating final success, LegalAgentBench incorporates keyword analysis during intermediate processes to calculate progress rates, enabling more fine-grained evaluation. We evaluated eight popular LLMs, highlighting the strengths, limitations, and potential areas for improvement of existing models and methods. LegalAgentBench sets a new benchmark for the practical application of LLMs in the legal domain, with its code and data available at \url{https://github.com/CSHaitao/LegalAgentBench}.
Abstract:Large language models (LLMs) have made significant progress in natural language processing tasks and demonstrate considerable potential in the legal domain. However, legal applications demand high standards of accuracy, reliability, and fairness. Applying existing LLMs to legal systems without careful evaluation of their potential and limitations could pose significant risks in legal practice. To this end, we introduce a standardized comprehensive Chinese legal benchmark LexEval. This benchmark is notable in the following three aspects: (1) Ability Modeling: We propose a new taxonomy of legal cognitive abilities to organize different tasks. (2) Scale: To our knowledge, LexEval is currently the largest Chinese legal evaluation dataset, comprising 23 tasks and 14,150 questions. (3) Data: we utilize formatted existing datasets, exam datasets and newly annotated datasets by legal experts to comprehensively evaluate the various capabilities of LLMs. LexEval not only focuses on the ability of LLMs to apply fundamental legal knowledge but also dedicates efforts to examining the ethical issues involved in their application. We evaluated 38 open-source and commercial LLMs and obtained some interesting findings. The experiments and findings offer valuable insights into the challenges and potential solutions for developing Chinese legal systems and LLM evaluation pipelines. The LexEval dataset and leaderboard are publicly available at \url{https://github.com/CSHaitao/LexEval} and will be continuously updated.
Abstract:Recent advances in Large Language Models (LLMs) have significantly shaped the applications of AI in multiple fields, including the studies of legal intelligence. Trained on extensive legal texts, including statutes and legal documents, the legal LLMs can capture important legal knowledge/concepts effectively and provide important support for downstream legal applications such as legal consultancy. Yet, the dynamic nature of legal statutes and interpretations also poses new challenges to the use of LLMs in legal applications. Particularly, how to update the legal knowledge of LLMs effectively and efficiently has become an important research problem in practice. Existing benchmarks for evaluating knowledge update methods are mostly designed for the open domain and cannot address the specific challenges of the legal domain, such as the nuanced application of new legal knowledge, the complexity and lengthiness of legal regulations, and the intricate nature of legal reasoning. To address this gap, we introduce the Legal Knowledge Update BEnchmark, i.e. LeKUBE, which evaluates knowledge update methods for legal LLMs across five dimensions. Specifically, we categorize the needs of knowledge updates in the legal domain with the help of legal professionals, and then hire annotators from law schools to create synthetic updates to the Chinese Criminal and Civil Code as well as sets of questions of which the answers would change after the updates. Through a comprehensive evaluation of state-of-the-art knowledge update methods, we reveal a notable gap between existing knowledge update methods and the unique needs of the legal domain, emphasizing the need for further research and development of knowledge update mechanisms tailored for legal LLMs.
Abstract:The tasks of legal case retrieval have received growing attention from the IR community in the last decade. Relevance feedback techniques with implicit user feedback (e.g., clicks) have been demonstrated to be effective in traditional search tasks (e.g., Web search). In legal case retrieval, however, collecting relevance feedback faces a couple of challenges that are difficult to resolve under existing feedback paradigms. First, legal case retrieval is a complex task as users often need to understand the relationship between legal cases in detail to correctly judge their relevance. Traditional feedback signal such as clicks is too coarse to use as they do not reflect any fine-grained relevance information. Second, legal case documents are usually long, users often need even tens of minutes to read and understand them. Simple behavior signal such as clicks and eye-tracking fixations can hardly be useful when users almost click and examine every part of the document. In this paper, we explore the possibility of solving the feedback problem in legal case retrieval with brain signal. Recent advances in brain signal processing have shown that human emotional can be collected in fine grains through Brain-Machine Interfaces (BMI) without interrupting the users in their tasks. Therefore, we propose a framework for legal case retrieval that uses EEG signal to optimize retrieval results. We collected and create a legal case retrieval dataset with users EEG signal and propose several methods to extract effective EEG features for relevance feedback. Our proposed features achieve a 71% accuracy for feedback prediction with an SVM-RFE model, and our proposed ranking method that takes into account the diverse needs of users can significantly improve user satisfaction for legal case retrieval. Experiment results show that re-ranked result list make user more satisfied.
Abstract:In recent years, the utilization of large language models for natural language dialogue has gained momentum, leading to their widespread adoption across various domains. However, their universal competence in addressing challenges specific to specialized fields such as law remains a subject of scrutiny. The incorporation of legal ethics into the model has been overlooked by researchers. We asserts that rigorous ethic evaluation is essential to ensure the effective integration of large language models in legal domains, emphasizing the need to assess domain-specific proficiency and domain-specific ethic. To address this, we propose a novelty evaluation methodology, utilizing authentic legal cases to evaluate the fundamental language abilities, specialized legal knowledge and legal robustness of large language models (LLMs). The findings from our comprehensive evaluation contribute significantly to the academic discourse surrounding the suitability and performance of large language models in legal domains.
Abstract:In the last decade, legal case search has become an important part of a legal practitioner's work. During legal case search, search engines retrieval a number of relevant cases from huge amounts of data and serve them to users. However, it is uncertain whether these cases are gender-biased and whether such bias has impact on user perceptions. We designed a new user experiment framework to simulate the judges' reading of relevant cases. 72 participants with backgrounds in legal affairs invited to conduct the experiment. Participants were asked to simulate the role of the judge in conducting a legal case search on 3 assigned cases and determine the sentences of the defendants in these cases. Gender of the defendants in both the task and relevant cases was edited to statistically measure the effect of gender bias in the legal case search results on participants' perceptions. The results showed that gender bias in the legal case search results did not have a significant effect on judges' perceptions.
Abstract:Legal case retrieval aims to help legal workers find relevant cases related to their cases at hand, which is important for the guarantee of fairness and justice in legal judgments. While recent advances in neural retrieval methods have significantly improved the performance of open-domain retrieval tasks (e.g., Web search), their advantages have not been observed in legal case retrieval due to their thirst for annotated data. As annotating large-scale training data in legal domains is prohibitive due to the need for domain expertise, traditional search techniques based on lexical matching such as TF-IDF, BM25, and Query Likelihood are still prevalent in legal case retrieval systems. While previous studies have designed several pre-training methods for IR models in open-domain tasks, these methods are usually suboptimal in legal case retrieval because they cannot understand and capture the key knowledge and data structures in the legal corpus. To this end, we propose a novel pre-training framework named Caseformer that enables the pre-trained models to learn legal knowledge and domain-specific relevance information in legal case retrieval without any human-labeled data. Through three unsupervised learning tasks, Caseformer is able to capture the special language, document structure, and relevance patterns of legal case documents, making it a strong backbone for downstream legal case retrieval tasks. Experimental results show that our model has achieved state-of-the-art performance in both zero-shot and full-data fine-tuning settings. Also, experiments on both Chinese and English legal datasets demonstrate that the effectiveness of Caseformer is language-independent in legal case retrieval.