Abstract:Deep Learning Recommendation Model(DLRM)s utilize the embedding layer to represent various categorical features. Traditional DLRMs adopt unified embedding size for all features, leading to suboptimal performance and redundant parameters. Thus, lots of Automatic Embedding size Search (AES) works focus on obtaining mixed embedding sizes with strong model performance. However, previous AES works can hardly address several challenges together: (1) The search results of embedding sizes are unstable; (2) Recommendation effect with AES results is unsatisfactory; (3) Memory cost of embeddings is uncontrollable. To address these challenges, we propose a novel one-shot AES framework called AdaS&S, in which a supernet encompassing various candidate embeddings is built and AES is performed as searching network architectures within it. Our framework contains two main stages: In the first stage, we decouple training parameters from searching embedding sizes, and propose the Adaptive Sampling method to yield a well-trained supernet, which further helps to produce stable AES results. In the second stage, to obtain embedding sizes that benefits the model effect, we design a reinforcement learning search process which utilizes the supernet trained previously. Meanwhile, to adapt searching to specific resource constraint, we introduce the resource competition penalty to balance the model effectiveness and memory cost of embeddings. We conduct extensive experiments on public datasets to show the superiority of AdaS&S. Our method could improve AUC by about 0.3% while saving about 20% of model parameters. Empirical analysis also shows that the stability of searching results in AdaS&S significantly exceeds other methods.
Abstract:With the rapid development of large language models (LLMs), how to efficiently evaluate them has become an important research question. Existing evaluation methods often suffer from high costs, limited test formats, the need of human references, and systematic evaluation biases. To address these limitations, our study introduces the Auto-PRE, an automatic LLM evaluation framework based on peer review. In contrast to previous studies that rely on human annotations, Auto-PRE selects evaluator LLMs automatically based on their inherent traits including consistency, self-confidence, and pertinence. We conduct extensive experiments on three tasks: summary generation, non-factoid question-answering, and dialogue generation. Experimental results indicate our Auto-PRE achieves state-of-the-art performance at a lower cost. Moreover, our study highlights the impact of prompt strategies and evaluation formats on evaluation performance, offering guidance for method optimization in the future.
Abstract:Recent advances in Large Language Models (LLMs) have significantly shaped the applications of AI in multiple fields, including the studies of legal intelligence. Trained on extensive legal texts, including statutes and legal documents, the legal LLMs can capture important legal knowledge/concepts effectively and provide important support for downstream legal applications such as legal consultancy. Yet, the dynamic nature of legal statutes and interpretations also poses new challenges to the use of LLMs in legal applications. Particularly, how to update the legal knowledge of LLMs effectively and efficiently has become an important research problem in practice. Existing benchmarks for evaluating knowledge update methods are mostly designed for the open domain and cannot address the specific challenges of the legal domain, such as the nuanced application of new legal knowledge, the complexity and lengthiness of legal regulations, and the intricate nature of legal reasoning. To address this gap, we introduce the Legal Knowledge Update BEnchmark, i.e. LeKUBE, which evaluates knowledge update methods for legal LLMs across five dimensions. Specifically, we categorize the needs of knowledge updates in the legal domain with the help of legal professionals, and then hire annotators from law schools to create synthetic updates to the Chinese Criminal and Civil Code as well as sets of questions of which the answers would change after the updates. Through a comprehensive evaluation of state-of-the-art knowledge update methods, we reveal a notable gap between existing knowledge update methods and the unique needs of the legal domain, emphasizing the need for further research and development of knowledge update mechanisms tailored for legal LLMs.
Abstract:For text-to-image generation, automatically refining user-provided natural language prompts into the keyword-enriched prompts favored by systems is essential for the user experience. Such a prompt refinement process is analogous to translating the prompt from "user languages" into "system languages". However, the scarcity of such parallel corpora makes it difficult to train a prompt refinement model. Inspired by zero-shot machine translation techniques, we introduce Prompt Refinement with Image Pivot (PRIP). PRIP innovatively uses the latent representation of a user-preferred image as an intermediary "pivot" between the user and system languages. It decomposes the refinement process into two data-rich tasks: inferring representations of user-preferred images from user languages and subsequently translating image representations into system languages. Thus, it can leverage abundant data for training. Extensive experiments show that PRIP substantially outperforms a wide range of baselines and effectively transfers to unseen systems in a zero-shot manner.
Abstract:With the applications of recommendation systems rapidly expanding, an increasing number of studies have focused on every aspect of recommender systems with different data inputs, models, and task settings. Therefore, a flexible library is needed to help researchers implement the experimental strategies they require. Existing open libraries for recommendation scenarios have enabled reproducing various recommendation methods and provided standard implementations. However, these libraries often impose certain restrictions on data and seldom support the same model to perform different tasks and input formats, limiting users from customized explorations. To fill the gap, we propose ReChorus2.0, a modular and task-flexible library for recommendation researchers. Based on ReChorus, we upgrade the supported input formats, models, and training&evaluation strategies to help realize more recommendation tasks with more data types. The main contributions of ReChorus2.0 include: (1) Realization of complex and practical tasks, including reranking and CTR prediction tasks; (2) Inclusion of various context-aware and rerank recommenders; (3) Extension of existing and new models to support different tasks with the same models; (4) Support of highly-customized input with impression logs, negative items, or click labels, as well as user, item, and situation contexts. To summarize, ReChorus2.0 serves as a comprehensive and flexible library better aligning with the practical problems in the recommendation scenario and catering to more diverse research needs. The implementation and detailed tutorials of ReChorus2.0 can be found at https://github.com/THUwangcy/ReChorus.
Abstract:Nowadays, personalized recommender systems play an increasingly important role in music scenarios in our daily life with the preference prediction ability. However, existing methods mainly rely on users' implicit feedback (e.g., click, dwell time) which ignores the detailed user experience. This paper introduces Electroencephalography (EEG) signals to personal music preferences as a basis for the personalized recommender system. To realize collection in daily life, we use a dry-electrodes portable device to collect data. We perform a user study where participants listen to music and record preferences and moods. Meanwhile, EEG signals are collected with a portable device. Analysis of the collected data indicates a significant relationship between music preference, mood, and EEG signals. Furthermore, we conduct experiments to predict personalized music preference with the features of EEG signals. Experiments show significant improvement in rating prediction and preference classification with the help of EEG. Our work demonstrates the possibility of introducing EEG signals in personal music preference with portable devices. Moreover, our approach is not restricted to the music scenario, and the EEG signals as explicit feedback can be used in personalized recommendation tasks.
Abstract:Cross-domain recommender (CDR) systems aim to enhance the performance of the target domain by utilizing data from other related domains. However, irrelevant information from the source domain may instead degrade target domain performance, which is known as the negative transfer problem. There have been some attempts to address this problem, mostly by designing adaptive representations for overlapped users. Whereas, representation adaptions solely rely on the expressive capacity of the CDR model, lacking explicit constraint to filter the irrelevant source-domain collaborative information for the target domain. In this paper, we propose a novel Collaborative information regularized User Transformation (CUT) framework to tackle the negative transfer problem by directly filtering users' collaborative information. In CUT, user similarity in the target domain is adopted as a constraint for user transformation learning to filter the user collaborative information from the source domain. CUT first learns user similarity relationships from the target domain. Then, source-target information transfer is guided by the user similarity, where we design a user transformation layer to learn target-domain user representations and a contrastive loss to supervise the user collaborative information transferred. The results show significant performance improvement of CUT compared with SOTA single and cross-domain methods. Further analysis of the target-domain results illustrates that CUT can effectively alleviate the negative transfer problem.
Abstract:Text-to-image generation systems have emerged as revolutionary tools in the realm of artistic creation, offering unprecedented ease in transforming textual prompts into visual art. However, the efficacy of these systems is intricately linked to the quality of user-provided prompts, which often poses a challenge to users unfamiliar with prompt crafting. This paper addresses this challenge by leveraging user reformulation data from interaction logs to develop an automatic prompt reformulation model. Our in-depth analysis of these logs reveals that user prompt reformulation is heavily dependent on the individual user's capability, resulting in significant variance in the quality of reformulation pairs. To effectively use this data for training, we introduce the Capability-aware Prompt Reformulation (CAPR) framework. CAPR innovatively integrates user capability into the reformulation process through two key components: the Conditional Reformulation Model (CRM) and Configurable Capability Features (CCF). CRM reformulates prompts according to a specified user capability, as represented by CCF. The CCF, in turn, offers the flexibility to tune and guide the CRM's behavior. This enables CAPR to effectively learn diverse reformulation strategies across various user capacities and to simulate high-capability user reformulation during inference. Extensive experiments on standard text-to-image generation benchmarks showcase CAPR's superior performance over existing baselines and its remarkable robustness on unseen systems. Furthermore, comprehensive analyses validate the effectiveness of different components. CAPR can facilitate user-friendly interaction with text-to-image systems and make advanced artistic creation more achievable for a broader range of users.
Abstract:In recent years, the utilization of large language models for natural language dialogue has gained momentum, leading to their widespread adoption across various domains. However, their universal competence in addressing challenges specific to specialized fields such as law remains a subject of scrutiny. The incorporation of legal ethics into the model has been overlooked by researchers. We asserts that rigorous ethic evaluation is essential to ensure the effective integration of large language models in legal domains, emphasizing the need to assess domain-specific proficiency and domain-specific ethic. To address this, we propose a novelty evaluation methodology, utilizing authentic legal cases to evaluate the fundamental language abilities, specialized legal knowledge and legal robustness of large language models (LLMs). The findings from our comprehensive evaluation contribute significantly to the academic discourse surrounding the suitability and performance of large language models in legal domains.
Abstract:Fairness of recommender systems (RS) has attracted increasing attention recently. Based on the involved stakeholders, the fairness of RS can be divided into user fairness, item fairness, and two-sided fairness which considers both user and item fairness simultaneously. However, we argue that the intersectional two-sided unfairness may still exist even if the RS is two-sided fair, which is observed and shown by empirical studies on real-world data in this paper, and has not been well-studied previously. To mitigate this problem, we propose a novel approach called Intersectional Two-sided Fairness Recommendation (ITFR). Our method utilizes a sharpness-aware loss to perceive disadvantaged groups, and then uses collaborative loss balance to develop consistent distinguishing abilities for different intersectional groups. Additionally, predicted score normalization is leveraged to align positive predicted scores to fairly treat positives in different intersectional groups. Extensive experiments and analyses on three public datasets show that our proposed approach effectively alleviates the intersectional two-sided unfairness and consistently outperforms previous state-of-the-art methods.