Abstract:Explainable recommendation systems are important to enhance transparency, accuracy, and fairness. Beyond result-level explanations, model-level interpretations can provide valuable insights that allow developers to optimize system designs and implement targeted improvements. However, most current approaches depend on specialized model designs, which often lack generalization capabilities. Given the various kinds of recommendation models, existing methods have limited ability to effectively interpret them. To address this issue, we propose RecSAE, an automatic, generalizable probing method for interpreting the internal states of Recommendation models with Sparse AutoEncoder. RecSAE serves as a plug-in module that does not affect original models during interpretations, while also enabling predictable modifications to their behaviors based on interpretation results. Firstly, we train an autoencoder with sparsity constraints to reconstruct internal activations of recommendation models, making the RecSAE latents more interpretable and monosemantic than the original neuron activations. Secondly, we automated the construction of concept dictionaries based on the relationship between latent activations and input item sequences. Thirdly, RecSAE validates these interpretations by predicting latent activations on new item sequences using the concept dictionary and deriving interpretation confidence scores from precision and recall. We demonstrate RecSAE's effectiveness on two datasets, identifying hundreds of highly interpretable concepts from pure ID-based models. Latent ablation studies further confirm that manipulating latent concepts produces corresponding changes in model output behavior, underscoring RecSAE's utility for both understanding and targeted tuning recommendation models. Code and data are publicly available at https://github.com/Alice1998/RecSAE.
Abstract:With the rapid development of Large Language Models (LLMs), recent studies employed LLMs as recommenders to provide personalized information services for distinct users. Despite efforts to improve the accuracy of LLM-based recommendation models, relatively little attention is paid to beyond-utility dimensions. Moreover, there are unique evaluation aspects of LLM-based recommendation models, which have been largely ignored. To bridge this gap, we explore four new evaluation dimensions and propose a multidimensional evaluation framework. The new evaluation dimensions include: 1) history length sensitivity, 2) candidate position bias, 3) generation-involved performance, and 4) hallucinations. All four dimensions have the potential to impact performance, but are largely unnecessary for consideration in traditional systems. Using this multidimensional evaluation framework, along with traditional aspects, we evaluate the performance of seven LLM-based recommenders, with three prompting strategies, comparing them with six traditional models on both ranking and re-ranking tasks on four datasets. We find that LLMs excel at handling tasks with prior knowledge and shorter input histories in the ranking setting, and perform better in the re-ranking setting, beating traditional models across multiple dimensions. However, LLMs exhibit substantial candidate position bias issues, and some models hallucinate non-existent items much more often than others. We intend our evaluation framework and observations to benefit future research on the use of LLMs as recommenders. The code and data are available at https://github.com/JiangDeccc/EvaLLMasRecommender.
Abstract:Instant Messaging is a popular means for daily communication, allowing users to send text and stickers. As the saying goes, "a picture is worth a thousand words", so developing an effective sticker retrieval technique is crucial for enhancing user experience. However, existing sticker retrieval methods rely on labeled data to interpret stickers, and general-purpose Vision-Language Models (VLMs) often struggle to capture the unique semantics of stickers. Additionally, relevant-based sticker retrieval methods lack personalization, creating a gap between diverse user expectations and retrieval results. To address these, we propose the Personalized Sticker Retrieval with Vision-Language Model framework, namely PerSRV, structured into offline calculations and online processing modules. The online retrieval part follows the paradigm of relevant recall and personalized ranking, supported by the offline pre-calculation parts, which are sticker semantic understanding, utility evaluation and personalization modules. Firstly, for sticker-level semantic understanding, we supervised fine-tuned LLaVA-1.5-7B to generate human-like sticker semantics, complemented by textual content extracted from figures and historical interaction queries. Secondly, we investigate three crowd-sourcing metrics for sticker utility evaluation. Thirdly, we cluster style centroids based on users' historical interactions to achieve personal preference modeling. Finally, we evaluate our proposed PerSRV method on a public sticker retrieval dataset from WeChat, containing 543,098 candidates and 12,568 interactions. Experimental results show that PerSRV significantly outperforms existing methods in multi-modal sticker retrieval. Additionally, our fine-tuned VLM delivers notable improvements in sticker semantic understandings.
Abstract:Retrieval-augmented generation (RAG) has gained wide attention as the key component to improve generative models with external knowledge augmentation from information retrieval. It has shown great prominence in enhancing the functionality and performance of large language model (LLM)-based applications. However, with the comprehensive application of RAG, more and more problems and limitations have been identified, thus urgently requiring further fundamental exploration to improve current RAG frameworks. This workshop aims to explore in depth how to conduct refined and reliable RAG for downstream AI tasks. To this end, we propose to organize the first R3AG workshop at SIGIR-AP 2024 to call for participants to re-examine and formulate the basic principles and practical implementation of refined and reliable RAG. The workshop serves as a platform for both academia and industry researchers to conduct discussions, share insights, and foster research to build the next generation of RAG systems. Participants will engage in discussions and presentations focusing on fundamental challenges, cutting-edge research, and potential pathways to improve RAG. At the end of the workshop, we aim to have a clearer understanding of how to improve the reliability and applicability of RAG with more robust information retrieval and language generation.
Abstract:Large language models (LLMs) like GPTs, trained on vast datasets, have demonstrated impressive capabilities in language understanding, reasoning, and planning, achieving human-level performance in various tasks. Most studies focus on enhancing these models by training on ever-larger datasets to build more powerful foundation models. While training stronger models is important, enabling models to evolve during inference is equally crucial, a process we refer to as AI self-evolution. Unlike large-scale training, self-evolution may rely on limited data or interactions. Inspired by the columnar organization of the human cerebral cortex, we hypothesize that AI models could develop cognitive abilities and build internal representations through iterative interactions with their environment. To achieve this, models need long-term memory (LTM) to store and manage processed interaction data. LTM supports self-evolution by representing diverse experiences across environments and agents. In this report, we explore AI self-evolution and its potential to enhance models during inference. We examine LTM's role in lifelong learning, allowing models to evolve based on accumulated interactions. We outline the structure of LTM and the systems needed for effective data retention and representation. We also classify approaches for building personalized models with LTM data and show how these models achieve self-evolution through interaction. Using LTM, our multi-agent framework OMNE achieved first place on the GAIA benchmark, demonstrating LTM's potential for AI self-evolution. Finally, we present a roadmap for future research, emphasizing the importance of LTM for advancing AI technology and its practical applications.
Abstract:Despite having powerful reasoning and inference capabilities, Large Language Models (LLMs) still need external tools to acquire real-time information retrieval or domain-specific expertise to solve complex tasks, which is referred to as tool learning. Existing tool learning methods primarily rely on tuning with expert trajectories, focusing on token-sequence learning from a linguistic perspective. However, there are several challenges: 1) imitating static trajectories limits their ability to generalize to new tasks. 2) even expert trajectories can be suboptimal, and better solution paths may exist. In this work, we introduce StepTool, a novel step-grained reinforcement learning framework to improve tool learning in LLMs. It consists of two components: Step-grained Reward Shaping, which assigns rewards at each tool interaction based on tool invocation success and its contribution to the task, and Step-grained Optimization, which uses policy gradient methods to optimize the model in a multi-step manner. Experimental results demonstrate that StepTool significantly outperforms existing methods in multi-step, tool-based tasks, providing a robust solution for complex task environments. Codes are available at https://github.com/yuyq18/StepTool.
Abstract:Graph-based models and contrastive learning have emerged as prominent methods in Collaborative Filtering (CF). While many existing models in CF incorporate these methods in their design, there seems to be a limited depth of analysis regarding the foundational principles behind them. This paper bridges graph convolution, a pivotal element of graph-based models, with contrastive learning through a theoretical framework. By examining the learning dynamics and equilibrium of the contrastive loss, we offer a fresh lens to understand contrastive learning via graph theory, emphasizing its capability to capture high-order connectivity. Building on this analysis, we further show that the graph convolutional layers often used in graph-based models are not essential for high-order connectivity modeling and might contribute to the risk of oversmoothing. Stemming from our findings, we introduce Simple Contrastive Collaborative Filtering (SCCF), a simple and effective algorithm based on a naive embedding model and a modified contrastive loss. The efficacy of the algorithm is demonstrated through extensive experiments across four public datasets. The experiment code is available at \url{https://github.com/wu1hong/SCCF}. \end{abstract}
Abstract:The explainability of recommender systems has attracted significant attention in academia and industry. Many efforts have been made for explainable recommendations, yet evaluating the quality of the explanations remains a challenging and unresolved issue. In recent years, leveraging LLMs as evaluators presents a promising avenue in Natural Language Processing tasks (e.g., sentiment classification, information extraction), as they perform strong capabilities in instruction following and common-sense reasoning. However, evaluating recommendation explanatory texts is different from these NLG tasks, as its criteria are related to human perceptions and are usually subjective. In this paper, we investigate whether LLMs can serve as evaluators of recommendation explanations. To answer the question, we utilize real user feedback on explanations given from previous work and additionally collect third-party annotations and LLM evaluations. We design and apply a 3-level meta evaluation strategy to measure the correlation between evaluator labels and the ground truth provided by users. Our experiments reveal that LLMs, such as GPT4, can provide comparable evaluations with appropriate prompts and settings. We also provide further insights into combining human labels with the LLM evaluation process and utilizing ensembles of multiple heterogeneous LLM evaluators to enhance the accuracy and stability of evaluations. Our study verifies that utilizing LLMs as evaluators can be an accurate, reproducible and cost-effective solution for evaluating recommendation explanation texts. Our code is available at https://github.com/Xiaoyu-SZ/LLMasEvaluator.
Abstract:With the applications of recommendation systems rapidly expanding, an increasing number of studies have focused on every aspect of recommender systems with different data inputs, models, and task settings. Therefore, a flexible library is needed to help researchers implement the experimental strategies they require. Existing open libraries for recommendation scenarios have enabled reproducing various recommendation methods and provided standard implementations. However, these libraries often impose certain restrictions on data and seldom support the same model to perform different tasks and input formats, limiting users from customized explorations. To fill the gap, we propose ReChorus2.0, a modular and task-flexible library for recommendation researchers. Based on ReChorus, we upgrade the supported input formats, models, and training&evaluation strategies to help realize more recommendation tasks with more data types. The main contributions of ReChorus2.0 include: (1) Realization of complex and practical tasks, including reranking and CTR prediction tasks; (2) Inclusion of various context-aware and rerank recommenders; (3) Extension of existing and new models to support different tasks with the same models; (4) Support of highly-customized input with impression logs, negative items, or click labels, as well as user, item, and situation contexts. To summarize, ReChorus2.0 serves as a comprehensive and flexible library better aligning with the practical problems in the recommendation scenario and catering to more diverse research needs. The implementation and detailed tutorials of ReChorus2.0 can be found at https://github.com/THUwangcy/ReChorus.
Abstract:In this paper, we introduce a simulacrum of hospital called Agent Hospital that simulates the entire process of treating illness. All patients, nurses, and doctors are autonomous agents powered by large language models (LLMs). Our central goal is to enable a doctor agent to learn how to treat illness within the simulacrum. To do so, we propose a method called MedAgent-Zero. As the simulacrum can simulate disease onset and progression based on knowledge bases and LLMs, doctor agents can keep accumulating experience from both successful and unsuccessful cases. Simulation experiments show that the treatment performance of doctor agents consistently improves on various tasks. More interestingly, the knowledge the doctor agents have acquired in Agent Hospital is applicable to real-world medicare benchmarks. After treating around ten thousand patients (real-world doctors may take over two years), the evolved doctor agent achieves a state-of-the-art accuracy of 93.06% on a subset of the MedQA dataset that covers major respiratory diseases. This work paves the way for advancing the applications of LLM-powered agent techniques in medical scenarios.