Abstract:Most recently, learned image compression methods have outpaced traditional hand-crafted standard codecs. However, their inference typically requires to input the whole image at the cost of heavy computing resources, especially for high-resolution image compression; otherwise, the block artefact can exist when compressed by blocks within existing learned image compression methods. To address this issue, we propose a novel continuous patch stitching (CPS) framework for block-wise image compression that is able to achieve seamlessly patch stitching and mathematically eliminate block artefact, thus capable of significantly reducing the required computing resources when compressing images. More specifically, the proposed CPS framework is achieved by padding-free operations throughout, with a newly established parallel overlapping stitching strategy to provide a general upper bound for ensuring the continuity. Upon this, we further propose functional residual blocks with even-sized kernels to achieve down-sampling and up-sampling, together with bottleneck residual blocks retaining feature size to increase network depth. Experimental results demonstrate that our CPS framework achieves the state-of-the-art performance against existing baselines, whilst requiring less than half of computing resources of existing models. Our code shall be released upon acceptance.
Abstract:The emerging semantic compression has been receiving increasing research efforts most recently, capable of achieving high fidelity restoration during compression, even at extremely low bitrates. However, existing semantic compression methods typically combine standard pipelines with either pre-defined or high-dimensional semantics, thus suffering from deficiency in compression. To address this issue, we propose a novel hierarchical semantic compression (HSC) framework that purely operates within intrinsic semantic spaces from generative models, which is able to achieve efficient compression for consistent semantic restoration. More specifically, we first analyse the entropy models for the semantic compression, which motivates us to employ a hierarchical architecture based on a newly developed general inversion encoder. Then, we propose the feature compression network (FCN) and semantic compression network (SCN), such that the middle-level semantic feature and core semantics are hierarchically compressed to restore both accuracy and consistency of image semantics, via an entropy model progressively shared by channel-wise context. Experimental results demonstrate that the proposed HSC framework achieves the state-of-the-art performance on subjective quality and consistency for human vision, together with superior performances on machine vision tasks given compressed bitstreams. This essentially coincides with human visual system in understanding images, thus providing a new framework for future image/video compression paradigms. Our code shall be released upon acceptance.
Abstract:Stereo images captured by Mars rovers are transmitted after lossy compression due to the limited bandwidth between Mars and Earth. Unfortunately, this process results in undesirable compression artifacts. In this paper, we present a novel stereo quality enhancement approach for Martian images, named MarsSQE. First, we establish the first dataset of stereo Martian images. Through extensive analysis of this dataset, we observe that cross-view correlations in Martian images are notably high. Leveraging this insight, we design a bi-level cross-view attention-based quality enhancement network that fully exploits these inherent cross-view correlations. Specifically, our network integrates pixel-level attention for precise matching and patch-level attention for broader contextual information. Experimental results demonstrate the effectiveness of our MarsSQE approach.
Abstract:In recent years, learned image compression (LIC) technologies have surpassed conventional methods notably in terms of rate-distortion (RD) performance. Most present learned techniques are VAE-based with an autoregressive entropy model, which obviously promotes the RD performance by utilizing the decoded causal context. However, extant methods are highly dependent on the fixed hand-crafted causal context. The question of how to guide the auto-encoder to generate a more effective causal context benefit for the autoregressive entropy models is worth exploring. In this paper, we make the first attempt in investigating the way to explicitly adjust the causal context with our proposed Causal Context Adjustment loss (CCA-loss). By imposing the CCA-loss, we enable the neural network to spontaneously adjust important information into the early stage of the autoregressive entropy model. Furthermore, as transformer technology develops remarkably, variants of which have been adopted by many state-of-the-art (SOTA) LIC techniques. The existing computing devices have not adapted the calculation of the attention mechanism well, which leads to a burden on computation quantity and inference latency. To overcome it, we establish a convolutional neural network (CNN) image compression model and adopt the unevenly channel-wise grouped strategy for high efficiency. Ultimately, the proposed CNN-based LIC network trained with our Causal Context Adjustment loss attains a great trade-off between inference latency and rate-distortion performance.
Abstract:This paper reviews the NTIRE 2024 Challenge on Shortform UGC Video Quality Assessment (S-UGC VQA), where various excellent solutions are submitted and evaluated on the collected dataset KVQ from popular short-form video platform, i.e., Kuaishou/Kwai Platform. The KVQ database is divided into three parts, including 2926 videos for training, 420 videos for validation, and 854 videos for testing. The purpose is to build new benchmarks and advance the development of S-UGC VQA. The competition had 200 participants and 13 teams submitted valid solutions for the final testing phase. The proposed solutions achieved state-of-the-art performances for S-UGC VQA. The project can be found at https://github.com/lixinustc/KVQChallenge-CVPR-NTIRE2024.
Abstract:Lossy image compression is essential for Mars exploration missions, due to the limited bandwidth between Earth and Mars. However, the compression may introduce visual artifacts that complicate the geological analysis of the Martian surface. Existing quality enhancement approaches, primarily designed for Earth images, fall short for Martian images due to a lack of consideration for the unique Martian semantics. In response to this challenge, we conduct an in-depth analysis of Martian images, yielding two key insights based on semantics: the presence of texture similarities and the compact nature of texture representations in Martian images. Inspired by these findings, we introduce MarsQE, an innovative, semantic-informed, two-phase quality enhancement approach specifically designed for Martian images. The first phase involves the semantic-based matching of texture-similar reference images, and the second phase enhances image quality by transferring texture patterns from these reference images to the compressed image. We also develop a post-enhancement network to further reduce compression artifacts and achieve superior compression quality. Our extensive experiments demonstrate that MarsQE significantly outperforms existing approaches for Earth images, establishing a new benchmark for the quality enhancement on Martian images.
Abstract:Existing quality enhancement methods for compressed images focus on aligning the enhancement domain with the raw domain to yield realistic images. However, these methods exhibit a pervasive enhancement bias towards the compression domain, inadvertently regarding it as more realistic than the raw domain. This bias makes enhanced images closely resemble their compressed counterparts, thus degrading their perceptual quality. In this paper, we propose a simple yet effective method to mitigate this bias and enhance the quality of compressed images. Our method employs a conditional discriminator with the compressed image as a key condition, and then incorporates a domain-divergence regularization to actively distance the enhancement domain from the compression domain. Through this dual strategy, our method enables the discrimination against the compression domain, and brings the enhancement domain closer to the raw domain. Comprehensive quality evaluations confirm the superiority of our method over other state-of-the-art methods without incurring inference overheads.
Abstract:Correlation based stereo matching has achieved outstanding performance, which pursues cost volume between two feature maps. Unfortunately, current methods with a fixed model do not work uniformly well across various datasets, greatly limiting their real-world applicability. To tackle this issue, this paper proposes a new perspective to dynamically calculate correlation for robust stereo matching. A novel Uncertainty Guided Adaptive Correlation (UGAC) module is introduced to robustly adapt the same model for different scenarios. Specifically, a variance-based uncertainty estimation is employed to adaptively adjust the sampling area during warping operation. Additionally, we improve the traditional non-parametric warping with learnable parameters, such that the position-specific weights can be learned. We show that by empowering the recurrent network with the UGAC module, stereo matching can be exploited more robustly and effectively. Extensive experiments demonstrate that our method achieves state-of-the-art performance over the ETH3D, KITTI, and Middlebury datasets when employing the same fixed model over these datasets without any retraining procedure. To target real-time applications, we further design a lightweight model based on UGAC, which also outperforms other methods over KITTI benchmarks with only 0.6 M parameters.
Abstract:Blind image quality assessment (BIQA) aims at automatically and accurately forecasting objective scores for visual signals, which has been widely used to monitor product and service quality in low-light applications, covering smartphone photography, video surveillance, autonomous driving, etc. Recent developments in this field are dominated by unimodal solutions inconsistent with human subjective rating patterns, where human visual perception is simultaneously reflected by multiple sensory information (e.g., sight and hearing). In this article, we present a unique blind multimodal quality assessment (BMQA) of low-light images from subjective evaluation to objective score. To investigate the multimodal mechanism, we first establish a multimodal low-light image quality (MLIQ) database with authentic low-light distortions, containing image and audio modality pairs. Further, we specially design the key modules of BMQA, considering multimodal quality representation, latent feature alignment and fusion, and hybrid self-supervised and supervised learning. Extensive experiments show that our BMQA yields state-of-the-art accuracy on the proposed MLIQ benchmark database. In particular, we also build an independent single-image modality Dark-4K database, which is used to verify its applicability and generalization performance in mainstream unimodal applications. Qualitative and quantitative results on Dark-4K show that BMQA achieves superior performance to existing BIQA approaches as long as a pre-trained quality semantic description model is provided. The proposed framework and two databases as well as the collected BIQA methods and evaluation metrics are made publicly available.
Abstract:Image defocus is inherent in the physics of image formation caused by the optical aberration of lenses, providing plentiful information on image quality. Unfortunately, the existing quality enhancement approaches for compressed images neglect the inherent characteristic of defocus, resulting in inferior performance. This paper finds that in compressed images, the significantly defocused regions are with better compression quality and two regions with different defocus values possess diverse texture patterns. These findings motivate our defocus-aware quality enhancement (DAQE) approach. Specifically, we propose a novel dynamic region-based deep learning architecture of the DAQE approach, which considers the region-wise defocus difference of compressed images in two aspects. (1) The DAQE approach employs fewer computational resources to enhance the quality of significantly defocused regions, while more resources on enhancing the quality of other regions; (2) The DAQE approach learns to separately enhance diverse texture patterns for the regions with different defocus values, such that texture-wise one-on-one enhancement can be achieved. Extensive experiments validate the superiority of our DAQE approach in terms of quality enhancement and resource-saving, compared with other state-of-the-art approaches.