Abstract:Existing quality enhancement methods for compressed images focus on aligning the enhancement domain with the raw domain to yield realistic images. However, these methods exhibit a pervasive enhancement bias towards the compression domain, inadvertently regarding it as more realistic than the raw domain. This bias makes enhanced images closely resemble their compressed counterparts, thus degrading their perceptual quality. In this paper, we propose a simple yet effective method to mitigate this bias and enhance the quality of compressed images. Our method employs a conditional discriminator with the compressed image as a key condition, and then incorporates a domain-divergence regularization to actively distance the enhancement domain from the compression domain. Through this dual strategy, our method enables the discrimination against the compression domain, and brings the enhancement domain closer to the raw domain. Comprehensive quality evaluations confirm the superiority of our method over other state-of-the-art methods without incurring inference overheads.
Abstract:This paper reviews the NTIRE 2022 Challenge on Super-Resolution and Quality Enhancement of Compressed Video. In this challenge, we proposed the LDV 2.0 dataset, which includes the LDV dataset (240 videos) and 95 additional videos. This challenge includes three tracks. Track 1 aims at enhancing the videos compressed by HEVC at a fixed QP. Track 2 and Track 3 target both the super-resolution and quality enhancement of HEVC compressed video. They require x2 and x4 super-resolution, respectively. The three tracks totally attract more than 600 registrations. In the test phase, 8 teams, 8 teams and 12 teams submitted the final results to Tracks 1, 2 and 3, respectively. The proposed methods and solutions gauge the state-of-the-art of super-resolution and quality enhancement of compressed video. The proposed LDV 2.0 dataset is available at https://github.com/RenYang-home/LDV_dataset. The homepage of this challenge (including open-sourced codes) is at https://github.com/RenYang-home/NTIRE22_VEnh_SR.
Abstract:As a widely studied task, video restoration aims to enhance the quality of the videos with multiple potential degradations, such as noises, blurs and compression artifacts. Among video restorations, compressed video quality enhancement and video super-resolution are two of the main tacks with significant values in practical scenarios. Recently, recurrent neural networks and transformers attract increasing research interests in this field, due to their impressive capability in sequence-to-sequence modeling. However, the training of these models is not only costly but also relatively hard to converge, with gradient exploding and vanishing problems. To cope with these problems, we proposed a two-stage framework including a multi-frame recurrent network and a single-frame transformer. Besides, multiple training strategies, such as transfer learning and progressive training, are developed to shorten the training time and improve the model performance. Benefiting from the above technical contributions, our solution wins two champions and a runner-up in the NTIRE 2022 super-resolution and quality enhancement of compressed video challenges.