Abstract:Despite their impressive capabilities, Multimodal Large Language Models (MLLMs) are susceptible to hallucinations, especially assertively fabricating content not present in the visual inputs. To address the aforementioned challenge, we follow a common cognitive process - when one's initial memory of critical on-sight details fades, it is intuitive to look at them a second time to seek a factual and accurate answer. Therefore, we introduce Memory-space Visual Retracing (MemVR), a novel hallucination mitigation paradigm that without the need for external knowledge retrieval or additional fine-tuning. In particular, we treat visual prompts as supplementary evidence to be reinjected into MLLMs via Feed Forward Network (FFN) as key-value memory, when the model is uncertain or even amnesic about question-relevant visual memories. Comprehensive experimental evaluations demonstrate that MemVR significantly mitigates hallucination issues across various MLLMs and excels in general benchmarks without incurring added time overhead, thus emphasizing its potential for widespread applicability.
Abstract:Hallucination issues persistently plagued current multimodal large language models (MLLMs). While existing research primarily focuses on object-level or attribute-level hallucinations, sidelining the more sophisticated relation hallucinations that necessitate advanced reasoning abilities from MLLMs. Besides, recent benchmarks regarding relation hallucinations lack in-depth evaluation and effective mitigation. Moreover, their datasets are typically derived from a systematic annotation process, which could introduce inherent biases due to the predefined process. To handle the aforementioned challenges, we introduce Reefknot, a comprehensive benchmark specifically targeting relation hallucinations, consisting of over 20,000 samples derived from real-world scenarios. Specifically, we first provide a systematic definition of relation hallucinations, integrating perspectives from perceptive and cognitive domains. Furthermore, we construct the relation-based corpus utilizing the representative scene graph dataset Visual Genome (VG), from which semantic triplets follow real-world distributions. Our comparative evaluation across three distinct tasks revealed a substantial shortcoming in the capabilities of current MLLMs to mitigate relation hallucinations. Finally, we advance a novel confidence-based mitigation strategy tailored to tackle the relation hallucinations problem. Across three datasets, including Reefknot, we observed an average reduction of 9.75% in the hallucination rate. We believe our paper sheds valuable insights into achieving trustworthy multimodal intelligence. Our dataset and code will be released upon paper acceptance.
Abstract:Large Language Models (LLMs) are limited by their parametric knowledge, leading to hallucinations in knowledge-extensive tasks. To address this, Retrieval-Augmented Generation (RAG) incorporates external document chunks to expand LLM knowledge. Furthermore, compressing information from document chunks through extraction or summarization can improve LLM performance. Nonetheless, LLMs still struggle to notice and utilize scattered key information, a problem known as the "lost-in-the-middle" syndrome. Therefore, we typically need to restructure the content for LLM to recognize the key information. We propose $\textit{Refiner}$, an end-to-end extract-and-restructure paradigm that operates in the post-retrieval process of RAG. $\textit{Refiner}$ leverages a single decoder-only LLM to adaptively extract query-relevant contents verbatim along with the necessary context, and section them based on their interconnectedness, thereby highlights information distinction, and aligns downstream LLMs with the original context effectively. Experiments show that a trained $\textit{Refiner}$ (with 7B parameters) exhibits significant gain to downstream LLM in improving answer accuracy, and outperforms other state-of-the-art advanced RAG and concurrent compressing approaches in various single-hop and multi-hop QA tasks. Notably, $\textit{Refiner}$ achieves a 80.5% tokens reduction and a 1.6-7.0% improvement margin in multi-hop tasks compared to the next best solution. $\textit{Refiner}$ is a plug-and-play solution that can be seamlessly integrated with RAG systems, facilitating its application across diverse open-source frameworks.