Abstract:Graph Machine Learning (Graph ML) has witnessed substantial advancements in recent years. With their remarkable ability to process graph-structured data, Graph ML techniques have been extensively utilized across diverse applications, including critical domains like finance, healthcare, and transportation. Despite their societal benefits, recent research highlights significant safety concerns associated with the widespread use of Graph ML models. Lacking safety-focused designs, these models can produce unreliable predictions, demonstrate poor generalizability, and compromise data confidentiality. In high-stakes scenarios such as financial fraud detection, these vulnerabilities could jeopardize both individuals and society at large. Therefore, it is imperative to prioritize the development of safety-oriented Graph ML models to mitigate these risks and enhance public confidence in their applications. In this survey paper, we explore three critical aspects vital for enhancing safety in Graph ML: reliability, generalizability, and confidentiality. We categorize and analyze threats to each aspect under three headings: model threats, data threats, and attack threats. This novel taxonomy guides our review of effective strategies to protect against these threats. Our systematic review lays a groundwork for future research aimed at developing practical, safety-centered Graph ML models. Furthermore, we highlight the significance of safe Graph ML practices and suggest promising avenues for further investigation in this crucial area.
Abstract:Transfer learning aims to boost the learning on the target task leveraging knowledge learned from other relevant tasks. However, when the source and target are not closely related, the learning performance may be adversely affected, a phenomenon known as negative transfer. In this paper, we investigate the negative transfer in graph transfer learning, which is important yet underexplored. We reveal that, unlike image or text, negative transfer commonly occurs in graph-structured data, even when source and target graphs share semantic similarities. Specifically, we identify that structural differences significantly amplify the dissimilarities in the node embeddings across graphs. To mitigate this, we bring a new insight: for semantically similar graphs, although structural differences lead to significant distribution shift in node embeddings, their impact on subgraph embeddings could be marginal. Building on this insight, we introduce two effective yet elegant methods, Subgraph Pooling (SP) and Subgraph Pooling++ (SP++), that transfer subgraph-level knowledge across graphs. We theoretically analyze the role of SP in reducing graph discrepancy and conduct extensive experiments to evaluate its superiority under various settings. Our code and datasets are available at: https://github.com/Zehong-Wang/Subgraph-Pooling.
Abstract:Graph Neural Networks (GNNs) have demonstrated effectiveness in various graph learning tasks, yet their reliance on message-passing constraints their deployment in latency-sensitive applications such as financial fraud detection. Recent works have explored distilling knowledge from GNNs to Multi-Layer Perceptrons (MLPs) to accelerate inference. However, this task-specific supervised distillation limits generalization to unseen nodes, which are prevalent in latency-sensitive applications. To this end, we present \textbf{\textsc{SimMLP}}, a \textbf{\textsc{Sim}}ple yet effective framework for learning \textbf{\textsc{MLP}}s on graphs without supervision, to enhance generalization. \textsc{SimMLP} employs self-supervised alignment between GNNs and MLPs to capture the fine-grained and generalizable correlation between node features and graph structures, and proposes two strategies to alleviate the risk of trivial solutions. Theoretically, we comprehensively analyze \textsc{SimMLP} to demonstrate its equivalence to GNNs in the optimal case and its generalization capability. Empirically, \textsc{SimMLP} outperforms state-of-the-art baselines, especially in settings with unseen nodes. In particular, it obtains significant performance gains {\bf (7$\sim$26\%)} over MLPs and inference acceleration over GNNs {\bf (90$\sim$126$\times$)} on large-scale graph datasets. Our codes are available at: \url{https://github.com/Zehong-Wang/SimMLP}.
Abstract:Generative self-supervised learning on graphs, particularly graph masked autoencoders, has emerged as a popular learning paradigm and demonstrated its efficacy in handling non-Euclidean data. However, several remaining issues limit the capability of existing methods: 1) the disregard of uneven node significance in masking, 2) the underutilization of holistic graph information, 3) the ignorance of semantic knowledge in the representation space due to the exclusive use of reconstruction loss in the output space, and 4) the unstable reconstructions caused by the large volume of masked contents. In light of this, we propose UGMAE, a unified framework for graph masked autoencoders to address these issues from the perspectives of adaptivity, integrity, complementarity, and consistency. Specifically, we first develop an adaptive feature mask generator to account for the unique significance of nodes and sample informative masks (adaptivity). We then design a ranking-based structure reconstruction objective joint with feature reconstruction to capture holistic graph information and emphasize the topological proximity between neighbors (integrity). After that, we present a bootstrapping-based similarity module to encode the high-level semantic knowledge in the representation space, complementary to the low-level reconstruction in the output space (complementarity). Finally, we build a consistency assurance module to provide reconstruction objectives with extra stabilized consistency targets (consistency). Extensive experiments demonstrate that UGMAE outperforms both contrastive and generative state-of-the-art baselines on several tasks across multiple datasets.
Abstract:The online emergence of multi-modal sharing platforms (eg, TikTok, Youtube) is powering personalized recommender systems to incorporate various modalities (eg, visual, textual and acoustic) into the latent user representations. While existing works on multi-modal recommendation exploit multimedia content features in enhancing item embeddings, their model representation capability is limited by heavy label reliance and weak robustness on sparse user behavior data. Inspired by the recent progress of self-supervised learning in alleviating label scarcity issue, we explore deriving self-supervision signals with effectively learning of modality-aware user preference and cross-modal dependencies. To this end, we propose a new Multi-Modal Self-Supervised Learning (MMSSL) method which tackles two key challenges. Specifically, to characterize the inter-dependency between the user-item collaborative view and item multi-modal semantic view, we design a modality-aware interactive structure learning paradigm via adversarial perturbations for data augmentation. In addition, to capture the effects that user's modality-aware interaction pattern would interweave with each other, a cross-modal contrastive learning approach is introduced to jointly preserve the inter-modal semantic commonality and user preference diversity. Experiments on real-world datasets verify the superiority of our method in offering great potential for multimedia recommendation over various state-of-the-art baselines. The implementation is released at: https://github.com/HKUDS/MMSSL.
Abstract:Graph Neural Networks (GNNs) have attracted tremendous attention by demonstrating their capability to handle graph data. However, they are difficult to be deployed in resource-limited devices due to model sizes and scalability constraints imposed by the multi-hop data dependency. In addition, real-world graphs usually possess complex structural information and features. Therefore, to improve the applicability of GNNs and fully encode the complicated topological information, knowledge distillation on graphs (KDG) has been introduced to build a smaller yet effective model and exploit more knowledge from data, leading to model compression and performance improvement. Recently, KDG has achieved considerable progress with many studies proposed. In this survey, we systematically review these works. Specifically, we first introduce KDG challenges and bases, then categorize and summarize existing works of KDG by answering the following three questions: 1) what to distillate, 2) who to whom, and 3) how to distillate. Finally, we share our thoughts on future research directions.
Abstract:Graph Neural Networks (GNNs) have drawn significant attentions over the years and been broadly applied to essential applications requiring solid robustness or vigorous security standards, such as product recommendation and user behavior modeling. Under these scenarios, exploiting GNN's vulnerabilities and further downgrading its performance become extremely incentive for adversaries. Previous attackers mainly focus on structural perturbations or node injections to the existing graphs, guided by gradients from the surrogate models. Although they deliver promising results, several limitations still exist. For the structural perturbation attack, to launch a proposed attack, adversaries need to manipulate the existing graph topology, which is impractical in most circumstances. Whereas for the node injection attack, though being more practical, current approaches require training surrogate models to simulate a white-box setting, which results in significant performance downgrade when the surrogate architecture diverges from the actual victim model. To bridge these gaps, in this paper, we study the problem of black-box node injection attack, without training a potentially misleading surrogate model. Specifically, we model the node injection attack as a Markov decision process and propose Gradient-free Graph Advantage Actor Critic, namely G2A2C, a reinforcement learning framework in the fashion of advantage actor critic. By directly querying the victim model, G2A2C learns to inject highly malicious nodes with extremely limited attacking budgets, while maintaining a similar node feature distribution. Through our comprehensive experiments over eight acknowledged benchmark datasets with different characteristics, we demonstrate the superior performance of our proposed G2A2C over the existing state-of-the-art attackers. Source code is publicly available at: https://github.com/jumxglhf/G2A2C}.
Abstract:Graph structure learning (GSL), which aims to learn the adjacency matrix for graph neural networks (GNNs), has shown great potential in boosting the performance of GNNs. Most existing GSL works apply a joint learning framework where the estimated adjacency matrix and GNN parameters are optimized for downstream tasks. However, as GSL is essentially a link prediction task, whose goal may largely differ from the goal of the downstream task. The inconsistency of these two goals limits the GSL methods to learn the potential optimal graph structure. Moreover, the joint learning framework suffers from scalability issues in terms of time and space during the process of estimation and optimization of the adjacency matrix. To mitigate these issues, we propose a graph structure refinement (GSR) framework with a pretrain-finetune pipeline. Specifically, The pre-training phase aims to comprehensively estimate the underlying graph structure by a multi-view contrastive learning framework with both intra- and inter-view link prediction tasks. Then, the graph structure is refined by adding and removing edges according to the edge probabilities estimated by the pre-trained model. Finally, the fine-tuning GNN is initialized by the pre-trained model and optimized toward downstream tasks. With the refined graph structure remaining static in the fine-tuning space, GSR avoids estimating and optimizing graph structure in the fine-tuning phase which enjoys great scalability and efficiency. Moreover, the fine-tuning GNN is boosted by both migrating knowledge and refining graphs. Extensive experiments are conducted to evaluate the effectiveness (best performance on six benchmark datasets), efficiency, and scalability (13.8x faster using 32.8% GPU memory compared to the best GSL baseline on Cora) of the proposed model.
Abstract:Graph neural networks (GNNs) have shown remarkable performance on diverse graph mining tasks. Although different GNNs can be unified as the same message passing framework, they learn complementary knowledge from the same graph. Knowledge distillation (KD) is developed to combine the diverse knowledge from multiple models. It transfers knowledge from high-capacity teachers to a lightweight student. However, to avoid oversmoothing, GNNs are often shallow, which deviates from the setting of KD. In this context, we revisit KD by separating its benefits from model compression and emphasizing its power of transferring knowledge. To this end, we need to tackle two challenges: how to transfer knowledge from compact teachers to a student with the same capacity; and, how to exploit student GNN's own strength to learn knowledge. In this paper, we propose a novel adaptive KD framework, called BGNN, which sequentially transfers knowledge from multiple GNNs into a student GNN. We also introduce an adaptive temperature module and a weight boosting module. These modules guide the student to the appropriate knowledge for effective learning. Extensive experiments have demonstrated the effectiveness of BGNN. In particular, we achieve up to 3.05% improvement for node classification and 7.67% improvement for graph classification over vanilla GNNs.
Abstract:A common thread of open-domain question answering (QA) models employs a retriever-reader pipeline that first retrieves a handful of relevant passages from Wikipedia and then peruses the passages to produce an answer. However, even state-of-the-art readers fail to capture the complex relationships between entities appearing in questions and retrieved passages, leading to answers that contradict the facts. In light of this, we propose a novel knowledge Graph enhanced passage reader, namely Grape, to improve the reader performance for open-domain QA. Specifically, for each pair of question and retrieved passage, we first construct a localized bipartite graph, attributed to entity embeddings extracted from the intermediate layer of the reader model. Then, a graph neural network learns relational knowledge while fusing graph and contextual representations into the hidden states of the reader model. Experiments on three open-domain QA benchmarks show Grape can improve the state-of-the-art performance by up to 2.2 exact match score with a negligible overhead increase, with the same retriever and retrieved passages. Our code is publicly available at https://github.com/jumxglhf/GRAPE.