Abstract:Graphs are ubiquitous data structures found in numerous real-world applications, such as drug discovery, recommender systems, and social network analysis. Graph neural networks (GNNs) have become a popular tool to learn node embeddings through message passing on these structures. However, a significant challenge arises when applying GNNs to multiple graphs with different feature spaces, as existing GNN architectures are not designed for cross-graph feature alignment. To address this, recent approaches introduce text-attributed graphs, where each node is associated with a textual description, enabling the use of a shared textual encoder to project nodes from different graphs into a unified feature space. While promising, this method relies heavily on the availability of text-attributed data, which can be difficult to obtain in practice. To bridge this gap, we propose a novel method named Topology-Aware Node description Synthesis (TANS), which leverages large language models (LLMs) to automatically convert existing graphs into text-attributed graphs. The key idea is to integrate topological information with each node's properties, enhancing the LLMs' ability to explain how graph topology influences node semantics. We evaluate our TANS on text-rich, text-limited, and text-free graphs, demonstrating that it enables a single GNN to operate across diverse graphs. Notably, on text-free graphs, our method significantly outperforms existing approaches that manually design node features, showcasing the potential of LLMs for preprocessing graph-structured data, even in the absence of textual information. The code and data are available at https://github.com/Zehong-Wang/TANS.
Abstract:The prevalence of unhealthy eating habits has become an increasingly concerning issue in the United States. However, major food recommendation platforms (e.g., Yelp) continue to prioritize users' dietary preferences over the healthiness of their choices. Although efforts have been made to develop health-aware food recommendation systems, the personalization of such systems based on users' specific health conditions remains under-explored. In addition, few research focus on the interpretability of these systems, which hinders users from assessing the reliability of recommendations and impedes the practical deployment of these systems. In response to this gap, we first establish two large-scale personalized health-aware food recommendation benchmarks at the first attempt. We then develop a novel framework, Multi-Objective Personalized Interpretable Health-aware Food Recommendation System (MOPI-HFRS), which provides food recommendations by jointly optimizing the three objectives: user preference, personalized healthiness and nutritional diversity, along with an large language model (LLM)-enhanced reasoning module to promote healthy dietary knowledge through the interpretation of recommended results. Specifically, this holistic graph learning framework first utilizes two structure learning and a structure pooling modules to leverage both descriptive features and health data. Then it employs Pareto optimization to achieve designed multi-facet objectives. Finally, to further promote the healthy dietary knowledge and awareness, we exploit an LLM by utilizing knowledge-infusion, prompting the LLMs with knowledge obtained from the recommendation model for interpretation.
Abstract:Graph Neural Networks (GNNs) have demonstrated their effectiveness in various graph learning tasks, yet their reliance on neighborhood aggregation during inference poses challenges for deployment in latency-sensitive applications, such as real-time financial fraud detection. To address this limitation, recent studies have proposed distilling knowledge from teacher GNNs into student Multi-Layer Perceptrons (MLPs) trained on node content, aiming to accelerate inference. However, these approaches often inadequately explore structural information when inferring unseen nodes. To this end, we introduce SimMLP, a Self-supervised framework for learning MLPs on graphs, designed to fully integrate rich structural information into MLPs. Notably, SimMLP is the first MLP-learning method that can achieve equivalence to GNNs in the optimal case. The key idea is to employ self-supervised learning to align the representations encoded by graph context-aware GNNs and neighborhood dependency-free MLPs, thereby fully integrating the structural information into MLPs. We provide a comprehensive theoretical analysis, demonstrating the equivalence between SimMLP and GNNs based on mutual information and inductive bias, highlighting SimMLP's advanced structural learning capabilities. Additionally, we conduct extensive experiments on 20 benchmark datasets, covering node classification, link prediction, and graph classification, to showcase SimMLP's superiority over state-of-the-art baselines, particularly in scenarios involving unseen nodes (e.g., inductive and cold-start node classification) where structural insights are crucial. Our codes are available at: https://github.com/Zehong-Wang/SimMLP.
Abstract:Graph neural networks stand as the predominant technique for graph representation learning owing to their strong expressive power, yet the performance highly depends on the availability of high-quality labels in an end-to-end manner. Thus the pretraining and fine-tuning paradigm has been proposed to mitigate the label cost issue. Subsequently, the gap between the pretext tasks and downstream tasks has spurred the development of graph prompt learning which inserts a set of graph prompts into the original graph data with minimal parameters while preserving competitive performance. However, the current exploratory works are still limited since they all concentrate on learning fixed task-specific prompts which may not generalize well across the diverse instances that the task comprises. To tackle this challenge, we introduce Instance-Aware Graph Prompt Learning (IA-GPL) in this paper, aiming to generate distinct prompts tailored to different input instances. The process involves generating intermediate prompts for each instance using a lightweight architecture, quantizing these prompts through trainable codebook vectors, and employing the exponential moving average technique to ensure stable training. Extensive experiments conducted on multiple datasets and settings showcase the superior performance of IA-GPL compared to state-of-the-art baselines.
Abstract:Inspired by the success of foundation models in applications such as ChatGPT, as graph data has been ubiquitous, one can envision the far-reaching impacts that can be brought by Graph Foundation Models (GFMs) with broader applications in the areas such as scientific research, social network analysis, drug discovery, and e-commerce. Despite the significant progress of pre-trained graph neural networks, there haven't been GFMs that can achieve desired performance on various graph-learning-related tasks. Building GFMs may rely on a vocabulary that encodes transferable patterns shared among different tasks and domains. Unlike image and text, defining such transferable patterns for graphs remains an open question. In this paper, we aim to bridge this gap by rethinking the transferable patterns on graphs as computation trees -- i.e., tree structures derived from the message-passing process. Based on this insight, we propose a cross-task, cross-domain graph foundation model named GFT, short for Graph Foundation model with transferable Tree vocabulary. By treating computation trees as tokens within the transferable vocabulary, GFT improves model generalization and reduces the risk of negative transfer. The theoretical analyses and extensive experimental studies have demonstrated the transferability of computation trees and shown the effectiveness of GFT across diverse tasks and domains in graph learning. The open source code and data are available at https://github.com/Zehong-Wang/GFT.
Abstract:Graph Machine Learning (Graph ML) has witnessed substantial advancements in recent years. With their remarkable ability to process graph-structured data, Graph ML techniques have been extensively utilized across diverse applications, including critical domains like finance, healthcare, and transportation. Despite their societal benefits, recent research highlights significant safety concerns associated with the widespread use of Graph ML models. Lacking safety-focused designs, these models can produce unreliable predictions, demonstrate poor generalizability, and compromise data confidentiality. In high-stakes scenarios such as financial fraud detection, these vulnerabilities could jeopardize both individuals and society at large. Therefore, it is imperative to prioritize the development of safety-oriented Graph ML models to mitigate these risks and enhance public confidence in their applications. In this survey paper, we explore three critical aspects vital for enhancing safety in Graph ML: reliability, generalizability, and confidentiality. We categorize and analyze threats to each aspect under three headings: model threats, data threats, and attack threats. This novel taxonomy guides our review of effective strategies to protect against these threats. Our systematic review lays a groundwork for future research aimed at developing practical, safety-centered Graph ML models. Furthermore, we highlight the significance of safe Graph ML practices and suggest promising avenues for further investigation in this crucial area.
Abstract:Graph Neural Networks (GNNs) have demonstrated effectiveness in various graph learning tasks, yet their reliance on message-passing constraints their deployment in latency-sensitive applications such as financial fraud detection. Recent works have explored distilling knowledge from GNNs to Multi-Layer Perceptrons (MLPs) to accelerate inference. However, this task-specific supervised distillation limits generalization to unseen nodes, which are prevalent in latency-sensitive applications. To this end, we present \textbf{\textsc{SimMLP}}, a \textbf{\textsc{Sim}}ple yet effective framework for learning \textbf{\textsc{MLP}}s on graphs without supervision, to enhance generalization. \textsc{SimMLP} employs self-supervised alignment between GNNs and MLPs to capture the fine-grained and generalizable correlation between node features and graph structures, and proposes two strategies to alleviate the risk of trivial solutions. Theoretically, we comprehensively analyze \textsc{SimMLP} to demonstrate its equivalence to GNNs in the optimal case and its generalization capability. Empirically, \textsc{SimMLP} outperforms state-of-the-art baselines, especially in settings with unseen nodes. In particular, it obtains significant performance gains {\bf (7$\sim$26\%)} over MLPs and inference acceleration over GNNs {\bf (90$\sim$126$\times$)} on large-scale graph datasets. Our codes are available at: \url{https://github.com/Zehong-Wang/SimMLP}.
Abstract:Transfer learning aims to boost the learning on the target task leveraging knowledge learned from other relevant tasks. However, when the source and target are not closely related, the learning performance may be adversely affected, a phenomenon known as negative transfer. In this paper, we investigate the negative transfer in graph transfer learning, which is important yet underexplored. We reveal that, unlike image or text, negative transfer commonly occurs in graph-structured data, even when source and target graphs share semantic similarities. Specifically, we identify that structural differences significantly amplify the dissimilarities in the node embeddings across graphs. To mitigate this, we bring a new insight: for semantically similar graphs, although structural differences lead to significant distribution shift in node embeddings, their impact on subgraph embeddings could be marginal. Building on this insight, we introduce two effective yet elegant methods, Subgraph Pooling (SP) and Subgraph Pooling++ (SP++), that transfer subgraph-level knowledge across graphs. We theoretically analyze the role of SP in reducing graph discrepancy and conduct extensive experiments to evaluate its superiority under various settings. Our code and datasets are available at: https://github.com/Zehong-Wang/Subgraph-Pooling.
Abstract:Generative self-supervised learning on graphs, particularly graph masked autoencoders, has emerged as a popular learning paradigm and demonstrated its efficacy in handling non-Euclidean data. However, several remaining issues limit the capability of existing methods: 1) the disregard of uneven node significance in masking, 2) the underutilization of holistic graph information, 3) the ignorance of semantic knowledge in the representation space due to the exclusive use of reconstruction loss in the output space, and 4) the unstable reconstructions caused by the large volume of masked contents. In light of this, we propose UGMAE, a unified framework for graph masked autoencoders to address these issues from the perspectives of adaptivity, integrity, complementarity, and consistency. Specifically, we first develop an adaptive feature mask generator to account for the unique significance of nodes and sample informative masks (adaptivity). We then design a ranking-based structure reconstruction objective joint with feature reconstruction to capture holistic graph information and emphasize the topological proximity between neighbors (integrity). After that, we present a bootstrapping-based similarity module to encode the high-level semantic knowledge in the representation space, complementary to the low-level reconstruction in the output space (complementarity). Finally, we build a consistency assurance module to provide reconstruction objectives with extra stabilized consistency targets (consistency). Extensive experiments demonstrate that UGMAE outperforms both contrastive and generative state-of-the-art baselines on several tasks across multiple datasets.
Abstract:The online emergence of multi-modal sharing platforms (eg, TikTok, Youtube) is powering personalized recommender systems to incorporate various modalities (eg, visual, textual and acoustic) into the latent user representations. While existing works on multi-modal recommendation exploit multimedia content features in enhancing item embeddings, their model representation capability is limited by heavy label reliance and weak robustness on sparse user behavior data. Inspired by the recent progress of self-supervised learning in alleviating label scarcity issue, we explore deriving self-supervision signals with effectively learning of modality-aware user preference and cross-modal dependencies. To this end, we propose a new Multi-Modal Self-Supervised Learning (MMSSL) method which tackles two key challenges. Specifically, to characterize the inter-dependency between the user-item collaborative view and item multi-modal semantic view, we design a modality-aware interactive structure learning paradigm via adversarial perturbations for data augmentation. In addition, to capture the effects that user's modality-aware interaction pattern would interweave with each other, a cross-modal contrastive learning approach is introduced to jointly preserve the inter-modal semantic commonality and user preference diversity. Experiments on real-world datasets verify the superiority of our method in offering great potential for multimedia recommendation over various state-of-the-art baselines. The implementation is released at: https://github.com/HKUDS/MMSSL.