Abstract:The prevalence of unhealthy eating habits has become an increasingly concerning issue in the United States. However, major food recommendation platforms (e.g., Yelp) continue to prioritize users' dietary preferences over the healthiness of their choices. Although efforts have been made to develop health-aware food recommendation systems, the personalization of such systems based on users' specific health conditions remains under-explored. In addition, few research focus on the interpretability of these systems, which hinders users from assessing the reliability of recommendations and impedes the practical deployment of these systems. In response to this gap, we first establish two large-scale personalized health-aware food recommendation benchmarks at the first attempt. We then develop a novel framework, Multi-Objective Personalized Interpretable Health-aware Food Recommendation System (MOPI-HFRS), which provides food recommendations by jointly optimizing the three objectives: user preference, personalized healthiness and nutritional diversity, along with an large language model (LLM)-enhanced reasoning module to promote healthy dietary knowledge through the interpretation of recommended results. Specifically, this holistic graph learning framework first utilizes two structure learning and a structure pooling modules to leverage both descriptive features and health data. Then it employs Pareto optimization to achieve designed multi-facet objectives. Finally, to further promote the healthy dietary knowledge and awareness, we exploit an LLM by utilizing knowledge-infusion, prompting the LLMs with knowledge obtained from the recommendation model for interpretation.
Abstract:In this paper, we explore model-based approach to training robust and interpretable binarized regression models for multiclass classification tasks using Mixed-Integer Programming (MIP). Our MIP model balances the optimization of prediction margin and model size by using a weighted objective that: minimizes the total margin of incorrectly classified training instances, maximizes the total margin of correctly classified training instances, and maximizes the overall model regularization. We conduct two sets of experiments to test the classification accuracy of our MIP model over standard and corrupted versions of multiple classification datasets, respectively. In the first set of experiments, we show that our MIP model outperforms an equivalent Pseudo-Boolean Optimization (PBO) model and achieves competitive results to Logistic Regression (LR) and Gradient Descent (GD) in terms of classification accuracy over the standard datasets. In the second set of experiments, we show that our MIP model outperforms the other models (i.e., GD and LR) in terms of classification accuracy over majority of the corrupted datasets. Finally, we visually demonstrate the interpretability of our MIP model in terms of its learned parameters over the MNIST dataset. Overall, we show the effectiveness of training robust and interpretable binarized regression models using MIP.