Abstract:Large Language Models (LLMs) are highly resource-intensive to fine-tune due to their enormous size. While low-rank adaptation is a prominent parameter-efficient fine-tuning approach, it suffers from sensitivity to hyperparameter choices, leading to instability in model performance on fine-tuning downstream tasks. This paper highlights the importance of effective parameterization in low-rank fine-tuning to reduce estimator variance and enhance the stability of final model outputs. We propose MonteCLoRA, an efficient fine-tuning technique, employing Monte Carlo estimation to learn an unbiased posterior estimation of low-rank parameters with low expected variance, which stabilizes fine-tuned LLMs with only O(1) additional parameters. MonteCLoRA shows significant improvements in accuracy and robustness, achieving up to 3.8% higher accuracy and 8.6% greater robustness than existing efficient fine-tuning methods on natural language understanding tasks with pre-trained RoBERTa-base. Furthermore, in generative tasks with pre-trained LLaMA-1-7B, MonteCLoRA demonstrates robust zero-shot performance with 50% lower variance than the contemporary efficient fine-tuning methods. The theoretical and empirical results presented in the paper underscore how parameterization and hyperpriors balance exploration-exploitation in the low-rank parametric space, therefore leading to more optimal and robust parameter estimation during efficient fine-tuning.
Abstract:Fine-tuning large language models (LLMs) on downstream tasks requires substantial computational resources. A class of parameter-efficient fine-tuning (PEFT) aims to mitigate these computational challenges by selectively fine-tuning only a small fraction of the model parameters. Although computationally efficient, these techniques often fail to match the performance of fully fine-tuned models, primarily due to inherent biases introduced during parameter selection. Traditional selective PEFT techniques use a fixed set of parameters based on a predefined budget (a process also known as unmasking), failing to capture parameter importance dynamically and often ending up exceeding the budget. We introduce $\text{ID}^3$, a novel selective PEFT method that calculates parameter importance continually and dynamically unmasks parameters by balancing exploration and exploitation in parameter selection. Our empirical study on 15 tasks spanning natural language understanding and generative tasks demonstrates the effectiveness of our method compared to fixed-masking-based PEFT techniques. We analytically show that $\text{ID}^3$ reduces the number of gradient updates by a factor of two, enhancing computational efficiency. $\text{ID}^3$ is robust to random initialization of neurons and, therefore, can be seamlessly integrated into existing additive and reparametrization-based PEFT modules such as adapters and LoRA for dynamic sparsification.
Abstract:Multi-head self-attention-based Transformers have shown promise in different learning tasks. Albeit these models exhibit significant improvement in understanding short-term and long-term contexts from sequences, encoders of Transformers and their variants fail to preserve layer-wise contextual information. Transformers usually project tokens onto sparse manifolds and fail to preserve mathematical equivalence among the token representations. In this work, we propose TransJect, an encoder model that guarantees a theoretical bound for layer-wise distance preservation between a pair of tokens. We propose a simple alternative to dot-product attention to ensure Lipschitz continuity. This allows TransJect to learn injective mappings to transform token representations to different manifolds with similar topology and preserve Euclidean distance between every pair of tokens in subsequent layers. Evaluations across multiple benchmark short- and long-sequence classification tasks show maximum improvements of 6.8% and 5.9%, respectively, over the variants of Transformers. Additionally, TransJect displays 79% better performance than Transformer on the language modeling task. We further highlight the shortcomings of multi-head self-attention from the statistical physics viewpoint. Although multi-head self-attention was incepted to learn different abstraction levels within the networks, our empirical analyses suggest that different attention heads learn randomly and unorderly. In contrast, TransJect adapts a mixture of experts for regularization; these experts are more orderly and balanced and learn different sparse representations from the input sequences. TransJect exhibits very low entropy and can be efficiently scaled to larger depths.
Abstract:Code-mixing and script-mixing are prevalent across online social networks and multilingual societies. However, a user's preference toward code-mixing depends on the socioeconomic status, demographics of the user, and the local context, which existing generative models mostly ignore while generating code-mixed texts. In this work, we make a pioneering attempt to develop a persona-aware generative model to generate texts resembling real-life code-mixed texts of individuals. We propose a Persona-aware Generative Model for Code-mixed Generation, PARADOX, a novel Transformer-based encoder-decoder model that encodes an utterance conditioned on a user's persona and generates code-mixed texts without monolingual reference data. We propose an alignment module that re-calibrates the generated sequence to resemble real-life code-mixed texts. PARADOX generates code-mixed texts that are semantically more meaningful and linguistically more valid. To evaluate the personification capabilities of PARADOX, we propose four new metrics -- CM BLEU, CM Rouge-1, CM Rouge-L and CM KS. On average, PARADOX achieves 1.6 points better CM BLEU, 47% better perplexity and 32% better semantic coherence than the non-persona-based counterparts.
Abstract:Being a popular mode of text-based communication in multilingual communities, code-mixing in online social media has became an important subject to study. Learning the semantics and morphology of code-mixed language remains a key challenge, due to scarcity of data and unavailability of robust and language-invariant representation learning technique. Any morphologically-rich language can benefit from character, subword, and word-level embeddings, aiding in learning meaningful correlations. In this paper, we explore a hierarchical transformer-based architecture (HIT) to learn the semantics of code-mixed languages. HIT consists of multi-headed self-attention and outer product attention components to simultaneously comprehend the semantic and syntactic structures of code-mixed texts. We evaluate the proposed method across 6 Indian languages (Bengali, Gujarati, Hindi, Tamil, Telugu and Malayalam) and Spanish for 9 NLP tasks on 17 datasets. The HIT model outperforms state-of-the-art code-mixed representation learning and multilingual language models in all tasks. We further demonstrate the generalizability of the HIT architecture using masked language modeling-based pre-training, zero-shot learning, and transfer learning approaches. Our empirical results show that the pre-training objectives significantly improve the performance on downstream tasks.
Abstract:Understanding linguistics and morphology of resource-scarce code-mixed texts remains a key challenge in text processing. Although word embedding comes in handy to support downstream tasks for low-resource languages, there are plenty of scopes in improving the quality of language representation particularly for code-mixed languages. In this paper, we propose HIT, a robust representation learning method for code-mixed texts. HIT is a hierarchical transformer-based framework that captures the semantic relationship among words and hierarchically learns the sentence-level semantics using a fused attention mechanism. HIT incorporates two attention modules, a multi-headed self-attention and an outer product attention module, and computes their weighted sum to obtain the attention weights. Our evaluation of HIT on one European (Spanish) and five Indic (Hindi, Bengali, Tamil, Telugu, and Malayalam) languages across four NLP tasks on eleven datasets suggests significant performance improvement against various state-of-the-art systems. We further show the adaptability of learned representation across tasks in a transfer learning setup (with and without fine-tuning).
Abstract:Short text is a popular avenue of sharing feedback, opinions and reviews on social media, e-commerce platforms, etc. Many companies need to extract meaningful information (which may include thematic content as well as semantic polarity) out of such short texts to understand users' behaviour. However, obtaining high quality sentiment-associated and human interpretable themes still remains a challenge for short texts. In this paper we develop ELJST, an embedding enhanced generative joint sentiment-topic model that can discover more coherent and diverse topics from short texts. It uses Markov Random Field Regularizer that can be seen as a generalisation of skip-gram based models. Further, it can leverage higher-order semantic information appearing in word embedding, such as self-attention weights in graphical models. Our results show an average improvement of 10% in topic coherence and 5% in topic diversification over baselines. Finally, ELJST helps understand users' behaviour at more granular levels which can be explained. All these can bring significant values to the service and healthcare industries often dealing with customers.
Abstract:Despite abundant negotiation strategies in literature, the complexity of automated negotiation forbids a single strategy from being dominant against all others in different negotiation scenarios. To overcome this, one approach is to use mixture of experts, but at the same time, one problem of this method is the selection of experts, as this approach is limited by the competency of the experts selected. Another problem with most negotiation strategies is their incapability of adapting to dynamic variation of the opponent's behaviour within a single negotiation session resulting in poor performance. This work focuses on both, solving the problem of expert selection and adapting to the opponent's behaviour with our Autonomous Negotiating Agent Framework. This framework allows real-time classification of opponent's behaviour and provides a mechanism to select, switch or combine strategies within a single negotiation session. Additionally, our framework has a reviewer component which enables self-enhancement capability by deciding to include new strategies or replace old ones with better strategies periodically. We demonstrate an instance of our framework by implementing maximum entropy reinforcement learning based strategies with a deep learning based opponent classifier. Finally, we evaluate the performance of our agent against state-of-the-art negotiators under varied negotiation scenarios.
Abstract:With the advancement of huge data generation and data handling capability, Machine Learning and Probabilistic modelling enables an immense opportunity to employ predictive analytics platform in high security critical industries namely data centers, electricity grids, utilities, airport etc. where downtime minimization is one of the primary objectives. This paper proposes a novel, complete architecture of an intelligent predictive analytics platform, Fault Engine, for huge device network connected with electrical/information flow. Three unique modules, here proposed, seamlessly integrate with available technology stack of data handling and connect with middleware to produce online intelligent prediction in critical failure scenarios. The Markov Failure module predicts the severity of a failure along with survival probability of a device at any given instances. The Root Cause Analysis model indicates probable devices as potential root cause employing Bayesian probability assignment and topological sort. Finally, a community detection algorithm produces correlated clusters of device in terms of failure probability which will further narrow down the search space of finding route cause. The whole Engine has been tested with different size of network with simulated failure environments and shows its potential to be scalable in real-time implementation.