Abstract:The digitization of historical documents is crucial for preserving the cultural heritage of the society. An important step in this process is converting scanned images to text using Optical Character Recognition (OCR), which can enable further search, information extraction, etc. Unfortunately, this is a hard problem as standard OCR tools are not tailored to deal with historical orthography as well as with challenging layouts. Thus, it is standard to apply an additional text correction step on the OCR output when dealing with such documents. In this work, we focus on Bulgarian, and we create the first benchmark dataset for evaluating the OCR text correction for historical Bulgarian documents written in the first standardized Bulgarian orthography: the Drinov orthography from the 19th century. We further develop a method for automatically generating synthetic data in this orthography, as well as in the subsequent Ivanchev orthography, by leveraging vast amounts of contemporary literature Bulgarian texts. We then use state-of-the-art LLMs and encoder-decoder framework which we augment with diagonal attention loss and copy and coverage mechanisms to improve the post-OCR text correction. The proposed method reduces the errors introduced during recognition and improves the quality of the documents by 25\%, which is an increase of 16\% compared to the state-of-the-art on the ICDAR 2019 Bulgarian dataset. We release our data and code at \url{https://github.com/angelbeshirov/post-ocr-text-correction}.}
Abstract:Pre-trained Language Models (PLMs) are known to contain various kinds of knowledge. One method to infer relational knowledge is through the use of cloze-style prompts, where a model is tasked to predict missing subjects or objects. Typically, designing these prompts is a tedious task because small differences in syntax or semantics can have a substantial impact on knowledge retrieval performance. Simultaneously, evaluating the impact of either prompt syntax or information is challenging due to their interdependence. We designed CONPARE-LAMA - a dedicated probe, consisting of 34 million distinct prompts that facilitate comparison across minimal paraphrases. These paraphrases follow a unified meta-template enabling the controlled variation of syntax and semantics across arbitrary relations. CONPARE-LAMA enables insights into the independent impact of either syntactical form or semantic information of paraphrases on the knowledge retrieval performance of PLMs. Extensive knowledge retrieval experiments using our probe reveal that prompts following clausal syntax have several desirable properties in comparison to appositive syntax: i) they are more useful when querying PLMs with a combination of supplementary information, ii) knowledge is more consistently recalled across different combinations of supplementary information, and iii) they decrease response uncertainty when retrieving known facts. In addition, range information can boost knowledge retrieval performance more than domain information, even though domain information is more reliably helpful across syntactic forms.
Abstract:The wide-spread use of social networks has given rise to subjective, misleading, and even false information on the Internet. Thus, subjectivity detection can play an important role in ensuring the objectiveness and the quality of a piece of information. This paper presents the solution built by the Gpachov team for the CLEF-2023 CheckThat! lab Task~2 on subjectivity detection. Three different research directions are explored. The first one is based on fine-tuning a sentence embeddings encoder model and dimensionality reduction. The second one explores a sample-efficient few-shot learning model. The third one evaluates fine-tuning a multilingual transformer on an altered dataset, using data from multiple languages. Finally, the three approaches are combined in a simple majority voting ensemble, resulting in 0.77 macro F1 on the test set and achieving 2nd place on the English subtask.
Abstract:The automatic identification of harmful content online is of major concern for social media platforms, policymakers, and society. Researchers have studied textual, visual, and audio content, but typically in isolation. Yet, harmful content often combines multiple modalities, as in the case of memes, which are of particular interest due to their viral nature. With this in mind, here we offer a comprehensive survey with a focus on harmful memes. Based on a systematic analysis of recent literature, we first propose a new typology of harmful memes, and then we highlight and summarize the relevant state of the art. One interesting finding is that many types of harmful memes are not really studied, e.g., such featuring self-harm and extremism, partly due to the lack of suitable datasets. We further find that existing datasets mostly capture multi-class scenarios, which are not inclusive of the affective spectrum that memes can represent. Another observation is that memes can propagate globally through repackaging in different languages and that they can also be multilingual, blending different cultures. We conclude by highlighting several challenges related to multimodal semiotics, technological constraints and non-trivial social engagement, and we present several open-ended aspects such as delineating online harm and empirically examining related frameworks and assistive interventions, which we believe will motivate and drive future research.
Abstract:Among the various modes of communication in social media, the use of Internet memes has emerged as a powerful means to convey political, psychological, and socio-cultural opinions. Although memes are typically humorous in nature, recent days have witnessed a proliferation of harmful memes targeted to abuse various social entities. As most harmful memes are highly satirical and abstruse without appropriate contexts, off-the-shelf multimodal models may not be adequate to understand their underlying semantics. In this work, we propose two novel problem formulations: detecting harmful memes and the social entities that these harmful memes target. To this end, we present HarMeme, the first benchmark dataset, containing 3,544 memes related to COVID-19. Each meme went through a rigorous two-stage annotation process. In the first stage, we labeled a meme as very harmful, partially harmful, or harmless; in the second stage, we further annotated the type of target(s) that each harmful meme points to: individual, organization, community, or society/general public/other. The evaluation results using ten unimodal and multimodal models highlight the importance of using multimodal signals for both tasks. We further discuss the limitations of these models and we argue that more research is needed to address these problems.
Abstract:Internet memes have become powerful means to transmit political, psychological, and socio-cultural ideas. Although memes are typically humorous, recent days have witnessed an escalation of harmful memes used for trolling, cyberbullying, and abuse. Detecting such memes is challenging as they can be highly satirical and cryptic. Moreover, while previous work has focused on specific aspects of memes such as hate speech and propaganda, there has been little work on harm in general. Here, we aim to bridge this gap. We focus on two tasks: (i)detecting harmful memes, and (ii)identifying the social entities they target. We further extend a recently released HarMeme dataset, which covered COVID-19, with additional memes and a new topic: US politics. To solve these tasks, we propose MOMENTA (MultimOdal framework for detecting harmful MemEs aNd Their tArgets), a novel multimodal deep neural network that uses global and local perspectives to detect harmful memes. MOMENTA systematically analyzes the local and the global perspective of the input meme (in both modalities) and relates it to the background context. MOMENTA is interpretable and generalizable, and our experiments show that it outperforms several strong rivaling approaches.
Abstract:We describe SemEval-2021 task 6 on Detection of Persuasion Techniques in Texts and Images: the data, the annotation guidelines, the evaluation setup, the results, and the participating systems. The task focused on memes and had three subtasks: (i) detecting the techniques in the text, (ii) detecting the text spans where the techniques are used, and (iii) detecting techniques in the entire meme, i.e., both in the text and in the image. It was a popular task, attracting 71 registrations, and 22 teams that eventually made an official submission on the test set. The evaluation results for the third subtask confirmed the importance of both modalities, the text and the image. Moreover, some teams reported benefits when not just combining the two modalities, e.g., by using early or late fusion, but rather modeling the interaction between them in a joint model.
Abstract:Semantic Web technologies offer the prospect of significantly reducing the amount of effort required to integrate existing enterprise functionality in support of new composite processes; whether within a given organization or across multiple ones. A significant body of work in this area has aimed to fully automate this process, while assuming that all functionality has already been encapsulated in the form of semantic web services with rich and accurate annotations. In this article, we argue that this assumption is often unrealistic. Instead, we describe a mixed initiative framework for semantic web service discovery and composition that aims at flexibly interleaving human decision making and automated functionality in environments where annotations may be incomplete and even inconsistent.