Abstract:Healthcare Community Question Answering (CQA) forums offer an accessible platform for individuals seeking information on various healthcare-related topics. People find such platforms suitable for self-disclosure, seeking medical opinions, finding simplified explanations for their medical conditions, and answering others' questions. However, answers on these forums are typically diverse and prone to off-topic discussions. It can be challenging for readers to sift through numerous answers and extract meaningful insights, making answer summarization a crucial task for CQA forums. While several efforts have been made to summarize the community answers, most of them are limited to the open domain and overlook the different perspectives offered by these answers. To address this problem, this paper proposes a novel task of perspective-specific answer summarization. We identify various perspectives, within healthcare-related responses and frame a perspective-driven abstractive summary covering all responses. To achieve this, we annotate 3167 CQA threads with 6193 perspective-aware summaries in our PUMA dataset. Further, we propose PLASMA, a prompt-driven controllable summarization model. To encapsulate the perspective-specific conditions, we design an energy-controlled loss function for the optimization. We also leverage the prefix tuner to learn the intricacies of the health-care perspective summarization. Our evaluation against five baselines suggests the superior performance of PLASMA by a margin of 1.5-21% improvement. We supplement our experiments with ablation and qualitative analysis.
Abstract:As hate speech continues to proliferate on the web, it is becoming increasingly important to develop computational methods to mitigate it. Reactively, using black-box models to identify hateful content can perplex users as to why their posts were automatically flagged as hateful. On the other hand, proactive mitigation can be achieved by suggesting rephrasing before a post is made public. However, both mitigation techniques require information about which part of a post contains the hateful aspect, i.e., what spans within a text are responsible for conveying hate. Better detection of such spans can significantly reduce explicitly hateful content on the web. To further contribute to this research area, we organized HateNorm at HASOC-FIRE 2023, focusing on explicit span detection in English Tweets. A total of 12 teams participated in the competition, with the highest macro-F1 observed at 0.58.
Abstract:Memes are a powerful tool for communication over social media. Their affinity for evolving across politics, history, and sociocultural phenomena makes them an ideal communication vehicle. To comprehend the subtle message conveyed within a meme, one must understand the background that facilitates its holistic assimilation. Besides digital archiving of memes and their metadata by a few websites like knowyourmeme.com, currently, there is no efficient way to deduce a meme's context dynamically. In this work, we propose a novel task, MEMEX - given a meme and a related document, the aim is to mine the context that succinctly explains the background of the meme. At first, we develop MCC (Meme Context Corpus), a novel dataset for MEMEX. Further, to benchmark MCC, we propose MIME (MultImodal Meme Explainer), a multimodal neural framework that uses common sense enriched meme representation and a layered approach to capture the cross-modal semantic dependencies between the meme and the context. MIME surpasses several unimodal and multimodal systems and yields an absolute improvement of ~ 4% F1-score over the best baseline. Lastly, we conduct detailed analyses of MIME's performance, highlighting the aspects that could lead to optimal modeling of cross-modal contextual associations.
Abstract:Counterspeech has been demonstrated to be an efficacious approach for combating hate speech. While various conventional and controlled approaches have been studied in recent years to generate counterspeech, a counterspeech with a certain intent may not be sufficient in every scenario. Due to the complex and multifaceted nature of hate speech, utilizing multiple forms of counter-narratives with varying intents may be advantageous in different circumstances. In this paper, we explore intent-conditioned counterspeech generation. At first, we develop IntentCONAN, a diversified intent-specific counterspeech dataset with 6831 counterspeeches conditioned on five intents, i.e., informative, denouncing, question, positive, and humour. Subsequently, we propose QUARC, a two-stage framework for intent-conditioned counterspeech generation. QUARC leverages vector-quantized representations learned for each intent category along with PerFuMe, a novel fusion module to incorporate intent-specific information into the model. Our evaluation demonstrates that QUARC outperforms several baselines by an average of 10% across evaluation metrics. An extensive human evaluation supplements our hypothesis of better and more appropriate responses than comparative systems.
Abstract:Virtual Mental Health Assistants (VMHAs) have become a prevalent method for receiving mental health counseling in the digital healthcare space. An assistive counseling conversation commences with natural open-ended topics to familiarize the client with the environment and later converges into more fine-grained domain-specific topics. Unlike other conversational systems, which are categorized as open-domain or task-oriented systems, VMHAs possess a hybrid conversational flow. These counseling bots need to comprehend various aspects of the conversation, such as dialogue-acts, intents, etc., to engage the client in an effective conversation. Although the surge in digital health research highlights applications of many general-purpose response generation systems, they are barely suitable in the mental health domain -- the prime reason is the lack of understanding in mental health counseling. Moreover, in general, dialogue-act guided response generators are either limited to a template-based paradigm or lack appropriate semantics. To this end, we propose READER -- a REsponse-Act guided reinforced Dialogue genERation model for the mental health counseling conversations. READER is built on transformer to jointly predict a potential dialogue-act d(t+1) for the next utterance (aka response-act) and to generate an appropriate response u(t+1). Through the transformer-reinforcement-learning (TRL) with Proximal Policy Optimization (PPO), we guide the response generator to abide by d(t+1) and ensure the semantic richness of the responses via BERTScore in our reward computation. We evaluate READER on HOPE, a benchmark counseling conversation dataset and observe that it outperforms several baselines across several evaluation metrics -- METEOR, ROUGE, and BERTScore. We also furnish extensive qualitative and quantitative analyses on results, including error analysis, human evaluation, etc.
Abstract:Memes can sway people's opinions over social media as they combine visual and textual information in an easy-to-consume manner. Since memes instantly turn viral, it becomes crucial to infer their intent and potentially associated harmfulness to take timely measures as needed. A common problem associated with meme comprehension lies in detecting the entities referenced and characterizing the role of each of these entities. Here, we aim to understand whether the meme glorifies, vilifies, or victimizes each entity it refers to. To this end, we address the task of role identification of entities in harmful memes, i.e., detecting who is the 'hero', the 'villain', and the 'victim' in the meme, if any. We utilize HVVMemes - a memes dataset on US Politics and Covid-19 memes, released recently as part of the CONSTRAINT@ACL-2022 shared-task. It contains memes, entities referenced, and their associated roles: hero, villain, victim, and other. We further design VECTOR (Visual-semantic role dEteCToR), a robust multi-modal framework for the task, which integrates entity-based contextual information in the multi-modal representation and compare it to several standard unimodal (text-only or image-only) or multi-modal (image+text) models. Our experimental results show that our proposed model achieves an improvement of 4% over the best baseline and 1% over the best competing stand-alone submission from the shared-task. Besides divulging an extensive experimental setup with comparative analyses, we finally highlight the challenges encountered in addressing the complex task of semantic role labeling within memes.
Abstract:Memes are powerful means for effective communication on social media. Their effortless amalgamation of viral visuals and compelling messages can have far-reaching implications with proper marketing. Previous research on memes has primarily focused on characterizing their affective spectrum and detecting whether the meme's message insinuates any intended harm, such as hate, offense, racism, etc. However, memes often use abstraction, which can be elusive. Here, we introduce a novel task - EXCLAIM, generating explanations for visual semantic role labeling in memes. To this end, we curate ExHVV, a novel dataset that offers natural language explanations of connotative roles for three types of entities - heroes, villains, and victims, encompassing 4,680 entities present in 3K memes. We also benchmark ExHVV with several strong unimodal and multimodal baselines. Moreover, we posit LUMEN, a novel multimodal, multi-task learning framework that endeavors to address EXCLAIM optimally by jointly learning to predict the correct semantic roles and correspondingly to generate suitable natural language explanations. LUMEN distinctly outperforms the best baseline across 18 standard natural language generation evaluation metrics. Our systematic evaluation and analyses demonstrate that characteristic multimodal cues required for adjudicating semantic roles are also helpful for generating suitable explanations.
Abstract:Existing self-supervised learning strategies are constrained to either a limited set of objectives or generic downstream tasks that predominantly target uni-modal applications. This has isolated progress for imperative multi-modal applications that are diverse in terms of complexity and domain-affinity, such as meme analysis. Here, we introduce two self-supervised pre-training methods, namely Ext-PIE-Net and MM-SimCLR that (i) employ off-the-shelf multi-modal hate-speech data during pre-training and (ii) perform self-supervised learning by incorporating multiple specialized pretext tasks, effectively catering to the required complex multi-modal representation learning for meme analysis. We experiment with different self-supervision strategies, including potential variants that could help learn rich cross-modality representations and evaluate using popular linear probing on the Hateful Memes task. The proposed solutions strongly compete with the fully supervised baseline via label-efficient training while distinctly outperforming them on all three tasks of the Memotion challenge with 0.18%, 23.64%, and 0.93% performance gain, respectively. Further, we demonstrate the generalizability of the proposed solutions by reporting competitive performance on the HarMeme task. Finally, we empirically establish the quality of the learned representations by analyzing task-specific learning, using fewer labeled training samples, and arguing that the complexity of the self-supervision strategy and downstream task at hand are correlated. Our efforts highlight the requirement of better multi-modal self-supervision methods involving specialized pretext tasks for efficient fine-tuning and generalizable performance.
Abstract:Social media has become the fulcrum of all forms of communication. Classifying social texts such as fake news, rumour, sarcasm, etc. has gained significant attention. The surface-level signals expressed by a social-text itself may not be adequate for such tasks; therefore, recent methods attempted to incorporate other intrinsic signals such as user behavior and the underlying graph structure. Oftentimes, the `public wisdom' expressed through the comments/replies to a social-text acts as a surrogate of crowd-sourced view and may provide us with complementary signals. State-of-the-art methods on social-text classification tend to ignore such a rich hierarchical signal. Here, we propose Hyphen, a discourse-aware hyperbolic spectral co-attention network. Hyphen is a fusion of hyperbolic graph representation learning with a novel Fourier co-attention mechanism in an attempt to generalise the social-text classification tasks by incorporating public discourse. We parse public discourse as an Abstract Meaning Representation (AMR) graph and use the powerful hyperbolic geometric representation to model graphs with hierarchical structure. Finally, we equip it with a novel Fourier co-attention mechanism to capture the correlation between the source post and public discourse. Extensive experiments on four different social-text classification tasks, namely detecting fake news, hate speech, rumour, and sarcasm, show that Hyphen generalises well, and achieves state-of-the-art results on ten benchmark datasets. We also employ a sentence-level fact-checked and annotated dataset to evaluate how Hyphen is capable of producing explanations as analogous evidence to the final prediction.
Abstract:The psychotherapy intervention technique is a multifaceted conversation between a therapist and a patient. Unlike general clinical discussions, psychotherapy's core components (viz. symptoms) are hard to distinguish, thus becoming a complex problem to summarize later. A structured counseling conversation may contain discussions about symptoms, history of mental health issues, or the discovery of the patient's behavior. It may also contain discussion filler words irrelevant to a clinical summary. We refer to these elements of structured psychotherapy as counseling components. In this paper, the aim is mental health counseling summarization to build upon domain knowledge and to help clinicians quickly glean meaning. We create a new dataset after annotating 12.9K utterances of counseling components and reference summaries for each dialogue. Further, we propose ConSum, a novel counseling-component guided summarization model. ConSum undergoes three independent modules. First, to assess the presence of depressive symptoms, it filters utterances utilizing the Patient Health Questionnaire (PHQ-9), while the second and third modules aim to classify counseling components. At last, we propose a problem-specific Mental Health Information Capture (MHIC) evaluation metric for counseling summaries. Our comparative study shows that we improve on performance and generate cohesive, semantic, and coherent summaries. We comprehensively analyze the generated summaries to investigate the capturing of psychotherapy elements. Human and clinical evaluations on the summary show that ConSum generates quality summary. Further, mental health experts validate the clinical acceptability of the ConSum. Lastly, we discuss the uniqueness in mental health counseling summarization in the real world and show evidences of its deployment on an online application with the support of mpathic.ai