Abstract:Recent advances in natural language processing have raised expectations for generative models to produce coherent text across diverse language varieties. In the particular case of the Portuguese language, the predominance of Brazilian Portuguese corpora online introduces linguistic biases in these models, limiting their applicability outside of Brazil. To address this gap and promote the creation of European Portuguese resources, we developed a cross-domain language variety identifier (LVI) to discriminate between European and Brazilian Portuguese. Motivated by the findings of our literature review, we compiled the PtBrVarId corpus, a cross-domain LVI dataset, and study the effectiveness of transformer-based LVI classifiers for cross-domain scenarios. Although this research focuses on two Portuguese varieties, our contribution can be extended to other varieties and languages. We open source the code, corpus, and models to foster further research in this task.
Abstract:We introduce a novel multilingual hierarchical corpus annotated for entity framing and role portrayal in news articles. The dataset uses a unique taxonomy inspired by storytelling elements, comprising 22 fine-grained roles, or archetypes, nested within three main categories: protagonist, antagonist, and innocent. Each archetype is carefully defined, capturing nuanced portrayals of entities such as guardian, martyr, and underdog for protagonists; tyrant, deceiver, and bigot for antagonists; and victim, scapegoat, and exploited for innocents. The dataset includes 1,378 recent news articles in five languages (Bulgarian, English, Hindi, European Portuguese, and Russian) focusing on two critical domains of global significance: the Ukraine-Russia War and Climate Change. Over 5,800 entity mentions have been annotated with role labels. This dataset serves as a valuable resource for research into role portrayal and has broader implications for news analysis. We describe the characteristics of the dataset and the annotation process, and we report evaluation results on fine-tuned state-of-the-art multilingual transformers and hierarchical zero-shot learning using LLMs at the level of a document, a paragraph, and a sentence.
Abstract:Event extraction is an NLP task that commonly involves identifying the central word (trigger) for an event and its associated arguments in text. ACE-2005 is widely recognised as the standard corpus in this field. While other corpora, like PropBank, primarily focus on annotating predicate-argument structure, ACE-2005 provides comprehensive information about the overall event structure and semantics. However, its limited language coverage restricts its usability. This paper introduces ACE-2005-PT, a corpus created by translating ACE-2005 into Portuguese, with European and Brazilian variants. To speed up the process of obtaining ACE-2005-PT, we rely on automatic translators. This, however, poses some challenges related to automatically identifying the correct alignments between multi-word annotations in the original text and in the corresponding translated sentence. To achieve this, we developed an alignment pipeline that incorporates several alignment techniques: lemmatization, fuzzy matching, synonym matching, multiple translations and a BERT-based word aligner. To measure the alignment effectiveness, a subset of annotations from the ACE-2005-PT corpus was manually aligned by a linguist expert. This subset was then compared against our pipeline results which achieved exact and relaxed match scores of 70.55\% and 87.55\% respectively. As a result, we successfully generated a Portuguese version of the ACE-2005 corpus, which has been accepted for publication by LDC.