Abstract:City council minutes are typically lengthy and formal documents with a bureaucratic writing style. Although publicly available, their structure often makes it difficult for citizens or journalists to efficiently find information. In this demo, we present CitiLink, a platform designed to transform unstructured municipal meeting minutes into structured and searchable data, demonstrating how NLP and IR can enhance the accessibility and transparency of local government. The system employs LLMs to extract metadata, discussed subjects, and voting outcomes, which are then indexed in a database to support full-text search with BM25 ranking and faceted filtering through a user-friendly interface. The developed system was built over a collection of 120 minutes made available by six Portuguese municipalities. To assess its usability, CitiLink was tested through guided sessions with municipal personnel, providing insights into how real users interact with the system. In addition, we evaluated Gemini's performance in extracting relevant information from the minutes, highlighting its effectiveness in data extraction.
Abstract:Textual health records of cancer patients are usually protracted and highly unstructured, making it very time-consuming for health professionals to get a complete overview of the patient's therapeutic course. As such limitations can lead to suboptimal and/or inefficient treatment procedures, healthcare providers would greatly benefit from a system that effectively summarizes the information of those records. With the advent of deep neural models, this objective has been partially attained for English clinical texts, however, the research community still lacks an effective solution for languages with limited resources. In this paper, we present the approach we developed to extract procedures, drugs, and diseases from oncology health records written in European Portuguese. This project was conducted in collaboration with the Portuguese Institute for Oncology which, besides holding over $10$ years of duly protected medical records, also provided oncologist expertise throughout the development of the project. Since there is no annotated corpus for biomedical entity extraction in Portuguese, we also present the strategy we followed in annotating the corpus for the development of the models. The final models, which combined a neural architecture with entity linking, achieved $F_1$ scores of $88.6$, $95.0$, and $55.8$ per cent in the mention extraction of procedures, drugs, and diseases, respectively.