Abstract:Event extraction is an NLP task that commonly involves identifying the central word (trigger) for an event and its associated arguments in text. ACE-2005 is widely recognised as the standard corpus in this field. While other corpora, like PropBank, primarily focus on annotating predicate-argument structure, ACE-2005 provides comprehensive information about the overall event structure and semantics. However, its limited language coverage restricts its usability. This paper introduces ACE-2005-PT, a corpus created by translating ACE-2005 into Portuguese, with European and Brazilian variants. To speed up the process of obtaining ACE-2005-PT, we rely on automatic translators. This, however, poses some challenges related to automatically identifying the correct alignments between multi-word annotations in the original text and in the corresponding translated sentence. To achieve this, we developed an alignment pipeline that incorporates several alignment techniques: lemmatization, fuzzy matching, synonym matching, multiple translations and a BERT-based word aligner. To measure the alignment effectiveness, a subset of annotations from the ACE-2005-PT corpus was manually aligned by a linguist expert. This subset was then compared against our pipeline results which achieved exact and relaxed match scores of 70.55\% and 87.55\% respectively. As a result, we successfully generated a Portuguese version of the ACE-2005 corpus, which has been accepted for publication by LDC.
Abstract:Event extraction is an Information Retrieval task that commonly consists of identifying the central word for the event (trigger) and the event's arguments. This task has been extensively studied for English but lags behind for Portuguese, partly due to the lack of task-specific annotated corpora. This paper proposes a framework in which two separated BERT-based models were fine-tuned to identify and classify events in Portuguese documents. We decompose this task into two sub-tasks. Firstly, we use a token classification model to detect event triggers. To extract event arguments, we train a Question Answering model that queries the triggers about their corresponding event argument roles. Given the lack of event annotated corpora in Portuguese, we translated the original version of the ACE-2005 dataset (a reference in the field) into Portuguese, producing a new corpus for Portuguese event extraction. To accomplish this, we developed an automatic translation pipeline. Our framework obtains F1 marks of 64.4 for trigger classification and 46.7 for argument classification setting, thus a new state-of-the-art reference for these tasks in Portuguese.