Heinrich-Heine-Universität Düsseldorf, Germany
Abstract:Pre-trained Language Models (PLMs) are known to contain various kinds of knowledge. One method to infer relational knowledge is through the use of cloze-style prompts, where a model is tasked to predict missing subjects or objects. Typically, designing these prompts is a tedious task because small differences in syntax or semantics can have a substantial impact on knowledge retrieval performance. Simultaneously, evaluating the impact of either prompt syntax or information is challenging due to their interdependence. We designed CONPARE-LAMA - a dedicated probe, consisting of 34 million distinct prompts that facilitate comparison across minimal paraphrases. These paraphrases follow a unified meta-template enabling the controlled variation of syntax and semantics across arbitrary relations. CONPARE-LAMA enables insights into the independent impact of either syntactical form or semantic information of paraphrases on the knowledge retrieval performance of PLMs. Extensive knowledge retrieval experiments using our probe reveal that prompts following clausal syntax have several desirable properties in comparison to appositive syntax: i) they are more useful when querying PLMs with a combination of supplementary information, ii) knowledge is more consistently recalled across different combinations of supplementary information, and iii) they decrease response uncertainty when retrieving known facts. In addition, range information can boost knowledge retrieval performance more than domain information, even though domain information is more reliably helpful across syntactic forms.
Abstract:We introduce SPUD (Semantically Perturbed Universal Dependencies), a framework for creating nonce treebanks for the multilingual Universal Dependencies (UD) corpora. SPUD data satisfies syntactic argument structure, provides syntactic annotations, and ensures grammaticality via language-specific rules. We create nonce data in Arabic, English, French, German, and Russian, and demonstrate two use cases of SPUD treebanks. First, we investigate the effect of nonce data on word co-occurrence statistics, as measured by perplexity scores of autoregressive (ALM) and masked language models (MLM). We find that ALM scores are significantly more affected by nonce data than MLM scores. Second, we show how nonce data affects the performance of syntactic dependency probes. We replicate the findings of M\"uller-Eberstein et al. (2022) on nonce test data and show that the performance declines on both MLMs and ALMs wrt. original test data. However, a majority of the performance is kept, suggesting that the probe indeed learns syntax independently from semantics.
Abstract:In this paper, we describe our submission to the BabyLM Challenge 2023 shared task on data-efficient language model (LM) pretraining (Warstadt et al., 2023). We train transformer-based masked language models that incorporate unsupervised predictions about hierarchical sentence structure into the model architecture. Concretely, we use the Structformer architecture (Shen et al., 2021) and variants thereof. StructFormer models have been shown to perform well on unsupervised syntactic induction based on limited pretraining data, and to yield performance improvements over a vanilla transformer architecture (Shen et al., 2021). Evaluation of our models on 39 tasks provided by the BabyLM challenge shows promising improvements of models that integrate a hierarchical bias into the architecture at some particular tasks, even though they fail to consistently outperform the RoBERTa baseline model provided by the shared task organizers on all tasks.
Abstract:Text simplification is an intralingual translation task in which documents, or sentences of a complex source text are simplified for a target audience. The success of automatic text simplification systems is highly dependent on the quality of parallel data used for training and evaluation. To advance sentence simplification and document simplification in German, this paper presents DEplain, a new dataset of parallel, professionally written and manually aligned simplifications in plain German ("plain DE" or in German: "Einfache Sprache"). DEplain consists of a news domain (approx. 500 document pairs, approx. 13k sentence pairs) and a web-domain corpus (approx. 150 aligned documents, approx. 2k aligned sentence pairs). In addition, we are building a web harvester and experimenting with automatic alignment methods to facilitate the integration of non-aligned and to be published parallel documents. Using this approach, we are dynamically increasing the web domain corpus, so it is currently extended to approx. 750 document pairs and approx. 3.5k aligned sentence pairs. We show that using DEplain to train a transformer-based seq2seq text simplification model can achieve promising results. We make available the corpus, the adapted alignment methods for German, the web harvester and the trained models here: https://github.com/rstodden/DEPlain.
Abstract:In this paper, we investigate to which extent contextual neural language models (LMs) implicitly learn syntactic structure. More concretely, we focus on constituent structure as represented in the Penn Treebank (PTB). Using standard probing techniques based on diagnostic classifiers, we assess the accuracy of representing constituents of different categories within the neuron activations of a LM such as RoBERTa. In order to make sure that our probe focuses on syntactic knowledge and not on implicit semantic generalizations, we also experiment on a PTB version that is obtained by randomly replacing constituents with each other while keeping syntactic structure, i.e., a semantically ill-formed but syntactically well-formed version of the PTB. We find that 4 pretrained transfomer LMs obtain high performance on our probing tasks even on manipulated data, suggesting that semantic and syntactic knowledge in their representations can be separated and that constituency information is in fact learned by the LM. Moreover, we show that a complete constituency tree can be linearly separated from LM representations.
Abstract:Multiword expressions (MWEs) exhibit both regular and idiosyncratic properties. Their idiosyncrasy requires lexical encoding in parallel with their component words. Their (at times intricate) regularity, on the other hand, calls for means of flexible factorization to avoid redundant descriptions of shared properties. However, so far, non-redundant general-purpose lexical encoding of MWEs has not received a satisfactory solution. We offer a proof of concept that this challenge might be effectively addressed within eXtensible MetaGrammar (XMG), an object-oriented metagrammar framework. We first make an existing metagrammatical resource, the FrenchTAG grammar, MWE-aware. We then evaluate the factorization gain during incremental implementation with XMG on a dataset extracted from an MWE-annotated reference corpus.
Abstract:We propose a new fast word embedding technique using hash functions. The method is a derandomization of a new type of random projections: By disregarding the classic constraint used in designing random projections (i.e., preserving pairwise distances in a particular normed space), our solution exploits extremely sparse non-negative random projections. Our experiments show that the proposed method can achieve competitive results, comparable to neural embedding learning techniques, however, with only a fraction of the computational complexity of these methods. While the proposed derandomization enhances the computational and space complexity of our method, the possibility of applying weighting methods such as positive pointwise mutual information (PPMI) to our models after their construction (and at a reduced dimensionality) imparts a high discriminatory power to the resulting embeddings. Obviously, this method comes with other known benefits of random projection-based techniques such as ease of update.
Abstract:In this paper, we present an open-source parsing environment (Tuebingen Linguistic Parsing Architecture, TuLiPA) which uses Range Concatenation Grammar (RCG) as a pivot formalism, thus opening the way to the parsing of several mildly context-sensitive formalisms. This environment currently supports tree-based grammars (namely Tree-Adjoining Grammars, TAG) and Multi-Component Tree-Adjoining Grammars with Tree Tuples (TT-MCTAG)) and allows computation not only of syntactic structures, but also of the corresponding semantic representations. It is used for the development of a tree-based grammar for German.