Abstract:Recent advancements in large language models (LLMs) have led to their increased application across various tasks, with reinforcement learning from human feedback (RLHF) being a crucial part of their training to align responses with user intentions. In the RLHF process, a reward model is trained using responses preferences determined by human labelers or AI systems, which then refines the LLM through reinforcement learning. This work introduces weak supervision as a strategy to extend RLHF datasets and enhance reward model performance. Weak supervision employs noisy or imprecise data labeling, reducing reliance on expensive manually labeled data. By analyzing RLHF datasets to identify heuristics that correlate with response preference, we wrote simple labeling functions and then calibrated a label model to weakly annotate unlabeled data. Our evaluation show that while weak supervision significantly benefits smaller datasets by improving reward model performance, its effectiveness decreases with larger, originally labeled datasets. Additionally, using an LLM to generate and then weakly label responses offers a promising method for extending preference data.
Abstract:This paper presents a comprehensive overview of the data preparation pipeline developed for the OpenGPT-X project, a large-scale initiative aimed at creating open and high-performance multilingual large language models (LLMs). The project goal is to deliver models that cover all major European languages, with a particular focus on real-world applications within the European Union. We explain all data processing steps, starting with the data selection and requirement definition to the preparation of the final datasets for model training. We distinguish between curated data and web data, as each of these categories is handled by distinct pipelines, with curated data undergoing minimal filtering and web data requiring extensive filtering and deduplication. This distinction guided the development of specialized algorithmic solutions for both pipelines. In addition to describing the processing methodologies, we provide an in-depth analysis of the datasets, increasing transparency and alignment with European data regulations. Finally, we share key insights and challenges faced during the project, offering recommendations for future endeavors in large-scale multilingual data preparation for LLMs.
Abstract:This paper addresses the challenge of integrating low-resource languages into multilingual automatic speech recognition (ASR) systems. We introduce a novel application of weighted cross-entropy, typically used for unbalanced datasets, to facilitate the integration of low-resource languages into pre-trained multilingual ASR models within the context of continual multilingual learning. We fine-tune the Whisper multilingual ASR model on five high-resource languages and one low-resource language, employing language-weighted dynamic cross-entropy and data augmentation. The results show a remarkable 6.69% word error rate (WER) reduction for the low-resource language compared to the fine-tuned model without applying our approach, and a 48.86% WER reduction compared to the original Whisper model. In addition, our approach yields an average WER reduction of 3.29% across the six languages, showing no degradation for the high-resource languages.
Abstract:Initially introduced as a machine translation model, the Transformer architecture has now become the foundation for modern deep learning architecture, with applications in a wide range of fields, from computer vision to natural language processing. Nowadays, to tackle increasingly more complex tasks, Transformer-based models are stretched to enormous sizes, requiring increasingly larger training datasets, and unsustainable amount of compute resources. The ubiquitous nature of the Transformer and its core component, the attention mechanism, are thus prime targets for efficiency research. In this work, we propose an alternative compatibility function for the self-attention mechanism introduced by the Transformer architecture. This compatibility function exploits an overlap in the learned representation of the traditional scaled dot-product attention, leading to a symmetric with pairwise coefficient dot-product attention. When applied to the pre-training of BERT-like models, this new symmetric attention mechanism reaches a score of 79.36 on the GLUE benchmark against 78.74 for the traditional implementation, leads to a reduction of 6% in the number of trainable parameters, and reduces the number of training steps required before convergence by half.
Abstract:Language models are trained mostly on Web data, which often contains social stereotypes and biases that the models can inherit. This has potentially negative consequences, as models can amplify these biases in downstream tasks or applications. However, prior research has primarily focused on the English language, especially in the context of gender bias. In particular, grammatically gender-neutral languages such as Turkish are underexplored despite representing different linguistic properties to language models with possibly different effects on biases. In this paper, we fill this research gap and investigate the significance of gender bias in Turkish language models. We build upon existing bias evaluation frameworks and extend them to the Turkish language by translating existing English tests and creating new ones designed to measure gender bias in the context of T\"urkiye. Specifically, we also evaluate Turkish language models for their embedded ethnic bias toward Kurdish people. Based on the experimental results, we attribute possible biases to different model characteristics such as the model size, their multilingualism, and the training corpora. We make the Turkish gender bias dataset publicly available.
Abstract:Search engines these days can serve datasets as search results. Datasets get picked up by search technologies based on structured descriptions on their official web pages, informed by metadata ontologies such as the Dataset content type of schema.org. Despite this promotion of the content type dataset as a first-class citizen of search results, a vast proportion of datasets, particularly research datasets, still need to be made discoverable and, therefore, largely remain unused. This is due to the sheer volume of datasets released every day and the inability of metadata to reflect a dataset's content and context accurately. This work seeks to improve this situation for a specific class of datasets, namely research datasets, which are the result of research endeavors and are accompanied by a scholarly publication. We propose the ORKG-Dataset content type, a specialized branch of the Open Research Knowledge Graoh (ORKG) platform, which provides descriptive information and a semantic model for research datasets, integrating them with their accompanying scholarly publications. This work aims to establish a standardized framework for recording and reporting research datasets within the ORKG-Dataset content type. This, in turn, increases research dataset transparency on the web for their improved discoverability and applied use. In this paper, we present a proposal -- the minimum FAIR, comparable, semantic description of research datasets in terms of salient properties of their supporting publication. We design a specific application of the ORKG-Dataset semantic model based on 40 diverse research datasets on scientific information extraction.
Abstract:Most Transformer language models are primarily pretrained on English text, limiting their use for other languages. As the model sizes grow, the performance gap between English and other languages with fewer compute and data resources increases even further. Consequently, more resource-efficient training methods are needed to bridge the gap for languages with fewer resources available. To address this problem, we introduce a cross-lingual and progressive transfer learning approach, called CLP-Transfer, that transfers models from a source language, for which pretrained models are publicly available, like English, to a new target language. As opposed to prior work, which focused on the cross-lingual transfer between two languages, we extend the transfer to the model size. Given a pretrained model in a source language, we aim for a same-sized model in a target language. Instead of training a model from scratch, we exploit a smaller model that is in the target language but requires much fewer resources. Both small and source models are then used to initialize the token embeddings of the larger model based on the overlapping vocabulary of the source and target language. All remaining weights are reused from the model in the source language. This approach outperforms the sole cross-lingual transfer and can save up to 80% of the training steps compared to the random initialization.
Abstract:The increasingly rapid spread of information about COVID-19 on the web calls for automatic measures of quality assurance. In that context, we check the credibility of news content using selected linguistic features. We present two empirical studies to evaluate the usability of graphical interfaces that offer such credibility assessment. In a moderated qualitative interview with six participants, we identify rating scale, sub-criteria and algorithm authorship as important predictors of the usability. A subsequent quantitative online survey with 50 participants reveals a conflict between transparency and conciseness in the interface design, as well as a perceived hierarchy of metadata: the authorship of a news text is more important than the authorship of the credibility algorithm used to assess the content quality. Finally, we make suggestions for future research, such as proactively documenting credibility-related metadata for Natural Language Processing and Language Technology services and establishing an explicit hierarchical taxonomy of usability predictors for automatic credibility assessment.
Abstract:Document embeddings and similarity measures underpin content-based recommender systems, whereby a document is commonly represented as a single generic embedding. However, similarity computed on single vector representations provides only one perspective on document similarity that ignores which aspects make two documents alike. To address this limitation, aspect-based similarity measures have been developed using document segmentation or pairwise multi-class document classification. While segmentation harms the document coherence, the pairwise classification approach scales poorly to large scale corpora. In this paper, we treat aspect-based similarity as a classical vector similarity problem in aspect-specific embedding spaces. We represent a document not as a single generic embedding but as multiple specialized embeddings. Our approach avoids document segmentation and scales linearly w.r.t.the corpus size. In an empirical study, we use the Papers with Code corpus containing 157,606 research papers and consider the task, method, and dataset of the respective research papers as their aspects. We compare and analyze three generic document embeddings, six specialized document embeddings and a pairwise classification baseline in the context of research paper recommendations. As generic document embeddings, we consider FastText, SciBERT, and SPECTER. To compute the specialized document embeddings, we compare three alternative methods inspired by retrofitting, fine-tuning, and Siamese networks. In our experiments, Siamese SciBERT achieved the highest scores. Additional analyses indicate an implicit bias of the generic document embeddings towards the dataset aspect and against the method aspect of each research paper. Our approach of aspect-based document embeddings mitigates potential risks arising from implicit biases by making them explicit.
Abstract:Transformer-based language models usually treat texts as linear sequences. However, most texts also have an inherent hierarchical structure, i.e., parts of a text can be identified using their position in this hierarchy. In addition, section titles usually indicate the common topic of their respective sentences. We propose a novel approach to formulate, extract, encode and inject hierarchical structure information explicitly into an extractive summarization model based on a pre-trained, encoder-only Transformer language model (HiStruct+ model), which improves SOTA ROUGEs for extractive summarization on PubMed and arXiv substantially. Using various experimental settings on three datasets (i.e., CNN/DailyMail, PubMed and arXiv), our HiStruct+ model outperforms a strong baseline collectively, which differs from our model only in that the hierarchical structure information is not injected. It is also observed that the more conspicuous hierarchical structure the dataset has, the larger improvements our method gains. The ablation study demonstrates that the hierarchical position information is the main contributor to our model's SOTA performance.