Abstract:Existing Scholarly Question Answering (QA) methods typically target homogeneous data sources, relying solely on either text or Knowledge Graphs (KGs). However, scholarly information often spans heterogeneous sources, necessitating the development of QA systems that integrate information from multiple heterogeneous data sources. To address this challenge, we introduce Hybrid-SQuAD (Hybrid Scholarly Question Answering Dataset), a novel large-scale QA dataset designed to facilitate answering questions incorporating both text and KG facts. The dataset consists of 10.5K question-answer pairs generated by a large language model, leveraging the KGs DBLP and SemOpenAlex alongside corresponding text from Wikipedia. In addition, we propose a RAG-based baseline hybrid QA model, achieving an exact match score of 69.65 on the Hybrid-SQuAD test set.
Abstract:This paper introduces a scholarly Question Answering (QA) system on top of the NFDI4DataScience Gateway, employing a Retrieval Augmented Generation-based (RAG) approach. The NFDI4DS Gateway, as a foundational framework, offers a unified and intuitive interface for querying various scientific databases using federated search. The RAG-based scholarly QA, powered by a Large Language Model (LLM), facilitates dynamic interaction with search results, enhancing filtering capabilities and fostering a conversational engagement with the Gateway search. The effectiveness of both the Gateway and the scholarly QA system is demonstrated through experimental analysis.
Abstract:This paper presents a scholarly Knowledge Graph Question Answering (KGQA) that answers bibliographic natural language questions by leveraging a large language model (LLM) in a few-shot manner. The model initially identifies the top-n similar training questions related to a given test question via a BERT-based sentence encoder and retrieves their corresponding SPARQL. Using the top-n similar question-SPARQL pairs as an example and the test question creates a prompt. Then pass the prompt to the LLM and generate a SPARQL. Finally, runs the SPARQL against the underlying KG - ORKG (Open Research KG) endpoint and returns an answer. Our system achieves an F1 score of 99.0%, on SciQA - one of the Scholarly-QALD-23 challenge benchmarks.