Universität Hamburg, Hamburg, Germany
Abstract:Existing Scholarly Question Answering (QA) methods typically target homogeneous data sources, relying solely on either text or Knowledge Graphs (KGs). However, scholarly information often spans heterogeneous sources, necessitating the development of QA systems that integrate information from multiple heterogeneous data sources. To address this challenge, we introduce Hybrid-SQuAD (Hybrid Scholarly Question Answering Dataset), a novel large-scale QA dataset designed to facilitate answering questions incorporating both text and KG facts. The dataset consists of 10.5K question-answer pairs generated by a large language model, leveraging the KGs DBLP and SemOpenAlex alongside corresponding text from Wikipedia. In addition, we propose a RAG-based baseline hybrid QA model, achieving an exact match score of 69.65 on the Hybrid-SQuAD test set.
Abstract:Human-produced emissions are growing at an alarming rate, causing already observable changes in the climate and environment in general. Each year global carbon dioxide emissions hit a new record, and it is reported that 0.5% of total US greenhouse gas emissions are attributed to data centres as of 2021. The release of ChatGPT in late 2022 sparked social interest in Large Language Models (LLMs), the new generation of Language Models with a large number of parameters and trained on massive amounts of data. Currently, numerous companies are releasing products featuring various LLMs, with many more models in development and awaiting release. Deep Learning research is a competitive field, with only models that reach top performance attracting attention and being utilized. Hence, achieving better accuracy and results is often the first priority, while the model's efficiency and the environmental impact of the study are neglected. However, LLMs demand substantial computational resources and are very costly to train, both financially and environmentally. It becomes essential to raise awareness and promote conscious decisions about algorithmic and hardware choices. Providing information on training time, the approximate carbon dioxide emissions and power consumption would assist future studies in making necessary adjustments and determining the compatibility of available computational resources with model requirements. In this study, we infused T5 LLM with external knowledge and fine-tuned the model for Question-Answering task. Furthermore, we calculated and reported the approximate environmental impact for both steps. The findings demonstrate that the smaller models may not always be sustainable options, and increased training does not always imply better performance. The most optimal outcome is achieved by carefully considering both performance and efficiency factors.
Abstract:The need for a disaster-related event monitoring system has arisen due to the societal and economic impact caused by the increasing number of severe disaster events. An event monitoring system should be able to extract event-related information from texts, and discriminates event instances. We demonstrate our open-source event monitoring system, namely, Master of Disaster (MoD), which receives news streams, extracts event information, links extracted information to a knowledge graph (KG), in this case Wikidata, and discriminates event instances visually. The goal of event visualization is to group event mentions referring to the same real-world event instance so that event instance discrimination can be achieved by visual screening.
Abstract:This paper introduces a scholarly Question Answering (QA) system on top of the NFDI4DataScience Gateway, employing a Retrieval Augmented Generation-based (RAG) approach. The NFDI4DS Gateway, as a foundational framework, offers a unified and intuitive interface for querying various scientific databases using federated search. The RAG-based scholarly QA, powered by a Large Language Model (LLM), facilitates dynamic interaction with search results, enhancing filtering capabilities and fostering a conversational engagement with the Gateway search. The effectiveness of both the Gateway and the scholarly QA system is demonstrated through experimental analysis.
Abstract:The development and integration of knowledge graphs and language models has significance in artificial intelligence and natural language processing. In this study, we introduce the BERTologyNavigator -- a two-phased system that combines relation extraction techniques and BERT embeddings to navigate the relationships within the DBLP Knowledge Graph (KG). Our approach focuses on extracting one-hop relations and labelled candidate pairs in the first phases. This is followed by employing BERT's CLS embeddings and additional heuristics for relation selection in the second phase. Our system reaches an F1 score of 0.2175 on the DBLP QuAD Final test dataset for Scholarly QALD and 0.98 F1 score on the subset of the DBLP QuAD test dataset during the QA phase.
Abstract:This paper presents a scholarly Knowledge Graph Question Answering (KGQA) that answers bibliographic natural language questions by leveraging a large language model (LLM) in a few-shot manner. The model initially identifies the top-n similar training questions related to a given test question via a BERT-based sentence encoder and retrieves their corresponding SPARQL. Using the top-n similar question-SPARQL pairs as an example and the test question creates a prompt. Then pass the prompt to the LLM and generate a SPARQL. Finally, runs the SPARQL against the underlying KG - ORKG (Open Research KG) endpoint and returns an answer. Our system achieves an F1 score of 99.0%, on SciQA - one of the Scholarly-QALD-23 challenge benchmarks.
Abstract:In this work, we present a web application named DBLPLink, which performs entity linking over the DBLP scholarly knowledge graph. DBLPLink uses text-to-text pre-trained language models, such as T5, to produce entity label spans from an input text question. Entity candidates are fetched from a database based on the labels, and an entity re-ranker sorts them based on entity embeddings, such as TransE, DistMult and ComplEx. The results are displayed so that users may compare and contrast the results between T5-small, T5-base and the different KG embeddings used. The demo can be accessed at https://ltdemos.informatik.uni-hamburg.de/dblplink/.
Abstract:Linking biomedical entities is an essential aspect in biomedical natural language processing tasks, such as text mining and question answering. However, a difficulty of linking the biomedical entities using current large language models (LLM) trained on a general corpus is that biomedical entities are scarcely distributed in texts and therefore have been rarely seen during training by the LLM. At the same time, those LLMs are not aware of high level semantic connection between different biomedical entities, which are useful in identifying similar concepts in different textual contexts. To cope with aforementioned problems, some recent works focused on injecting knowledge graph information into LLMs. However, former methods either ignore the relational knowledge of the entities or lead to catastrophic forgetting. Therefore, we propose a novel framework to pre-train the powerful generative LLM by a corpus synthesized from a KG. In the evaluations we are unable to confirm the benefit of including synonym, description or relational information.
Abstract:In this work, we analyse the role of output vocabulary for text-to-text (T2T) models on the task of SPARQL semantic parsing. We perform experiments within the the context of knowledge graph question answering (KGQA), where the task is to convert questions in natural language to the SPARQL query language. We observe that the query vocabulary is distinct from human vocabulary. Language Models (LMs) are pre-dominantly trained for human language tasks, and hence, if the query vocabulary is replaced with a vocabulary more attuned to the LM tokenizer, the performance of models may improve. We carry out carefully selected vocabulary substitutions on the queries and find absolute gains in the range of 17% on the GrailQA dataset.
Abstract:In this work we create a question answering dataset over the DBLP scholarly knowledge graph (KG). DBLP is an on-line reference for bibliographic information on major computer science publications that indexes over 4.4 million publications published by more than 2.2 million authors. Our dataset consists of 10,000 question answer pairs with the corresponding SPARQL queries which can be executed over the DBLP KG to fetch the correct answer. DBLP-QuAD is the largest scholarly question answering dataset.