Universität Hamburg, Hamburg, Germany, Vellore Institute of Technology, Vellore, Tamil Nadu, India
Abstract:The development and integration of knowledge graphs and language models has significance in artificial intelligence and natural language processing. In this study, we introduce the BERTologyNavigator -- a two-phased system that combines relation extraction techniques and BERT embeddings to navigate the relationships within the DBLP Knowledge Graph (KG). Our approach focuses on extracting one-hop relations and labelled candidate pairs in the first phases. This is followed by employing BERT's CLS embeddings and additional heuristics for relation selection in the second phase. Our system reaches an F1 score of 0.2175 on the DBLP QuAD Final test dataset for Scholarly QALD and 0.98 F1 score on the subset of the DBLP QuAD test dataset during the QA phase.
Abstract:Outfits in online fashion data are composed of items of many different types (e.g. top, bottom, shoes) that share some stylistic relationship with one another. A representation for building outfits requires a method that can learn both notions of similarity (for example, when two tops are interchangeable) and compatibility (items of possibly different type that can go together in an outfit). This paper presents an approach to learning an image embedding that respects item type, and jointly learns notions of item similarity and compatibility in an end-to-end model. To evaluate the learned representation, we crawled 68,306 outfits created by users on the Polyvore website. Our approach obtains 3-5% improvement over the state-of-the-art on outfit compatibility prediction and fill-in-the-blank tasks using our dataset, as well as an established smaller dataset, while supporting a variety of useful queries.
Abstract:We present Octopus, an AI agent to jointly balance three conflicting task objectives on a micro-crowdsourcing marketplace - the quality of work, total cost incurred, and time to completion. Previous control agents have mostly focused on cost-quality, or cost-time tradeoffs, but not on directly controlling all three in concert. A naive formulation of three-objective optimization is intractable; Octopus takes a hierarchical POMDP approach, with three different components responsible for setting the pay per task, selecting the next task, and controlling task-level quality. We demonstrate that Octopus significantly outperforms existing state-of-the-art approaches on real experiments. We also deploy Octopus on Amazon Mechanical Turk, showing its ability to manage tasks in a real-world dynamic setting.