Abstract:This paper presents our system development for SemEval-2024 Task 3: "The Competition of Multimodal Emotion Cause Analysis in Conversations". Effectively capturing emotions in human conversations requires integrating multiple modalities such as text, audio, and video. However, the complexities of these diverse modalities pose challenges for developing an efficient multimodal emotion cause analysis (ECA) system. Our proposed approach addresses these challenges by a two-step framework. We adopt two different approaches in our implementation. In Approach 1, we employ instruction-tuning with two separate Llama 2 models for emotion and cause prediction. In Approach 2, we use GPT-4V for conversation-level video description and employ in-context learning with annotated conversation using GPT 3.5. Our system wins rank 4, and system ablation experiments demonstrate that our proposed solutions achieve significant performance gains. All the experimental codes are available on Github.
Abstract:In this work, we present a web application named DBLPLink, which performs entity linking over the DBLP scholarly knowledge graph. DBLPLink uses text-to-text pre-trained language models, such as T5, to produce entity label spans from an input text question. Entity candidates are fetched from a database based on the labels, and an entity re-ranker sorts them based on entity embeddings, such as TransE, DistMult and ComplEx. The results are displayed so that users may compare and contrast the results between T5-small, T5-base and the different KG embeddings used. The demo can be accessed at https://ltdemos.informatik.uni-hamburg.de/dblplink/.