Henan Polytechnic University
Abstract:Large Language Model (LLM)-powered autonomous agents have demonstrated significant capabilities in virtual environments, yet their integration with the physical world remains narrowly confined to direct control interfaces. We present AgentRob, a framework that bridges online community forums, LLM-powered agents, and physical robots through the Model Context Protocol (MCP). AgentRob enables a novel paradigm where autonomous agents participate in online forums--reading posts, extracting natural language commands, dispatching physical robot actions, and reporting results back to the community. The system comprises three layers: a Forum Layer providing asynchronous, persistent, multi-agent interaction; an Agent Layer with forum agents that poll for @mention-targeted commands; and a Robot Layer with VLM-driven controllers and Unitree Go2/G1 hardware that translate commands into robot primitives via iterative tool calling. The framework supports multiple concurrent agents with distinct identities and physical embodiments coexisting in the same forum, establishing the feasibility of forum-mediated multi-agent robot orchestration.
Abstract:Model merging has emerged as a promising paradigm for composing the capabilities of large language models by directly operating in weight space, enabling the integration of specialized models without costly retraining. However, existing merging methods largely rely on parameter-space heuristics, which often introduce severe interference, leading to degraded generalization and unstable generation behaviors such as repetition and incoherent outputs. In this work, we propose Sparse Complementary Fusion with reverse KL (SCF-RKL), a novel model merging framework that explicitly controls functional interference through sparse, distribution-aware updates. Instead of assuming linear additivity in parameter space, SCF-RKL measures the functional divergence between models using reverse Kullback-Leibler divergence and selectively incorporates complementary parameters. This mode-seeking, sparsity-inducing design effectively preserves stable representations while integrating new capabilities. We evaluate SCF-RKL across a wide range of model scales and architectures, covering both reasoning-focused and instruction-tuned models. Extensive experiments on 24 benchmarks spanning advanced reasoning, general reasoning and knowledge, instruction following, and safety demonstrate, vision classification that SCF-RKL consistently outperforms existing model merging methods while maintaining strong generalization and generation stability.
Abstract:The rapid evolution of large language models (LLMs) has expanded their capabilities from basic dialogue to advanced scientific reasoning. However, existing benchmarks in biology often fail to assess a critical skill required of researchers: the ability to integrate experimental results with contextual knowledge to derive meaningful conclusions. To address this gap, we introduce BABE(Biology Arena BEnchmark), a comprehensive benchmark designed to evaluate the experimental reasoning capabilities of biological AI systems. BABE is uniquely constructed from peer-reviewed research papers and real-world biological studies, ensuring that tasks reflect the complexity and interdisciplinary nature of actual scientific inquiry. BABE challenges models to perform causal reasoning and cross-scale inference. Our benchmark provides a robust framework for assessing how well AI systems can reason like practicing scientists, offering a more authentic measure of their potential to contribute to biological research.
Abstract:Large Language Models (LLMs) face increasing threats from jailbreak attacks that bypass safety alignment. While prompt-based defenses such as Role-Oriented Prompts (RoP) and Task-Oriented Prompts (ToP) have shown effectiveness, the role of few-shot demonstrations in these defense strategies remains unclear. Prior work suggests that few-shot examples may compromise safety, but lacks investigation into how few-shot interacts with different system prompt strategies. In this paper, we conduct a comprehensive evaluation on multiple mainstream LLMs across four safety benchmarks (AdvBench, HarmBench, SG-Bench, XSTest) using six jailbreak attack methods. Our key finding reveals that few-shot demonstrations produce opposite effects on RoP and ToP: few-shot enhances RoP's safety rate by up to 4.5% through reinforcing role identity, while it degrades ToP's effectiveness by up to 21.2% through distracting attention from task instructions. Based on these findings, we provide practical recommendations for deploying prompt-based defenses in real-world LLM applications.
Abstract:The effectiveness of LLM-based agents is often limited not by model capacity alone, but by how efficiently contextual information is utilized at runtime. Existing agent frameworks rely on rigid, syntax-heavy state representations such as nested JSON, which require models to devote a substantial portion of their limited attention to syntactic processing rather than semantic reasoning. In this paper, we propose Fat-Cat, a document-driven agent architecture that improves the signal-to-noise ratio of state management. By integrating three key components: (1) a Semantic File System that represents agent state as Markdown documents aligned with common pre-training corpora, (2) a Textual Strategy Evolution module that accumulates task-solving knowledge without parameter updates, and (3) a Closed-Loop Watcher that monitors reasoning trajectories to reduce hallucinations. Extensive reasoning, retrieval, and coding benchmarks, Fat-Cat consistently improves agent performance. It enables the Kimi-k2 model to outperform the proprietary GPT-4o baseline on HotPotQA. Replacing the document-based state with JSON leads to performance drop, while empirically validating the critical necessity of document-driven state modeling over rigid syntax. The code is available at https://github.com/answeryt/Fat-Cat.
Abstract:The challenge of generating reliable local plans has long hindered practical applications in highly cluttered and dynamic environments. Key fundamental bottlenecks include acquiring large-scale expert demonstrations across diverse scenes and improving learning efficiency with limited data. This paper proposes SanD-Planner, a sample-efficient diffusion-based local planner that conducts depth image-based imitation learning within the clamped B-spline space. By operating within this compact space, the proposed algorithm inherently yields smooth outputs with bounded prediction errors over local supports, naturally aligning with receding-horizon execution. Integration of an ESDF-based safety checker with explicit clearance and time-to-completion metrics further reduces the training burden associated with value-function learning for feasibility assessment. Experiments show that training with $500$ episodes (merely $0.25\%$ of the demonstration scale used by the baseline), SanD-Planner achieves state-of-the-art performance on the evaluated open benchmark, attaining success rates of $90.1\%$ in simulated cluttered environments and $72.0\%$ in indoor simulations. The performance is further proven by demonstrating zero-shot transferability to realistic experimentation in both 2D and 3D scenes. The dataset and pre-trained models will also be open-sourced.
Abstract:As large language models (LLMs) continue to scale, deployment is increasingly bottlenecked by the memory wall, motivating a shift toward extremely low-bit quantization. However, most quantization-aware training (QAT) methods apply hard rounding and the straight-through estimator (STE) from the beginning of the training, which prematurely discretizes the optimization landscape and induces persistent gradient mismatch between latent weights and quantized weights, hindering effective optimization of quantized models. To address this, we propose Hestia, a Hessian-guided differentiable QAT framework for extremely low-bit LLMs, which replaces the rigid step function with a temperature-controlled softmax relaxation to maintain gradient flow early in training while progressively hardening quantization. Furthermore, Hestia leverages a tensor-wise Hessian trace metric as a lightweight curvature signal to drive fine-grained temperature annealing, enabling sensitivity-aware discretization across the model. Evaluations on Llama-3.2 show that Hestia consistently outperforms existing ternary QAT baselines, yielding average zero-shot improvements of 5.39% and 4.34% for the 1B and 3B models. These results indicate that Hessian-guided relaxation effectively recovers representational capacity, establishing a more robust training path for 1.58-bit LLMs. The code is available at https://github.com/hestia2026/Hestia.
Abstract:In recent years, safety risks associated with large language models have become increasingly prominent, highlighting the urgent need to mitigate the generation of toxic and harmful content. The mainstream paradigm for LLM safety alignment typically adopts a collaborative framework involving three roles: an attacker for adversarial prompt generation, a defender for safety defense, and an evaluator for response assessment. In this paper, we propose a closed-loop reinforcement learning framework called TriPlay-RL that enables iterative and co-improving collaboration among three roles with near-zero manual annotation. Experimental results show that the attacker preserves high output diversity while achieving a 20%-50% improvement in adversarial effectiveness; the defender attains 10%-30% gains in safety performance without degrading general reasoning capability; and the evaluator continuously refines its fine-grained judgment ability through iterations, accurately distinguishing unsafe responses, simple refusals, and useful guidance. Overall, our framework establishes an efficient and scalable paradigm for LLM safety alignment, enabling continuous co-evolution within a unified learning loop.
Abstract:Large language models are increasingly deployed as research agents for deep search and long-horizon information seeking, yet their performance often degrades as interaction histories grow. This degradation, known as context rot, reflects a failure to maintain coherent and task-relevant internal states over extended reasoning horizons. Existing approaches primarily manage context through raw accumulation or passive summarization, treating it as a static artifact and allowing early errors or misplaced emphasis to persist. Motivated by this perspective, we propose ARC, which is the first framework to systematically formulate context management as an active, reflection-driven process that treats context as a dynamic internal reasoning state during execution. ARC operationalizes this view through reflection-driven monitoring and revision, allowing agents to actively reorganize their working context when misalignment or degradation is detected. Experiments on challenging long-horizon information-seeking benchmarks show that ARC consistently outperforms passive context compression methods, achieving up to an 11% absolute improvement in accuracy on BrowseComp-ZH with Qwen2.5-32B-Instruct.
Abstract:Large language models (LLMs) often fail to learn effective long chain-of-thought (Long CoT) reasoning from human or non-Long-CoT LLMs imitation. To understand this, we propose that effective and learnable Long CoT trajectories feature stable molecular-like structures in unified view, which are formed by three interaction types: Deep-Reasoning (covalent-like), Self-Reflection (hydrogen-bond-like), and Self-Exploration (van der Waals-like). Analysis of distilled trajectories reveals these structures emerge from Long CoT fine-tuning, not keyword imitation. We introduce Effective Semantic Isomers and show that only bonds promoting fast entropy convergence support stable Long CoT learning, while structural competition impairs training. Drawing on these findings, we present Mole-Syn, a distribution-transfer-graph method that guides synthesis of effective Long CoT structures, boosting performance and RL stability across benchmarks.