Abstract:In recent years, safety risks associated with large language models have become increasingly prominent, highlighting the urgent need to mitigate the generation of toxic and harmful content. The mainstream paradigm for LLM safety alignment typically adopts a collaborative framework involving three roles: an attacker for adversarial prompt generation, a defender for safety defense, and an evaluator for response assessment. In this paper, we propose a closed-loop reinforcement learning framework called TriPlay-RL that enables iterative and co-improving collaboration among three roles with near-zero manual annotation. Experimental results show that the attacker preserves high output diversity while achieving a 20%-50% improvement in adversarial effectiveness; the defender attains 10%-30% gains in safety performance without degrading general reasoning capability; and the evaluator continuously refines its fine-grained judgment ability through iterations, accurately distinguishing unsafe responses, simple refusals, and useful guidance. Overall, our framework establishes an efficient and scalable paradigm for LLM safety alignment, enabling continuous co-evolution within a unified learning loop.
Abstract:Chain-of-Thought (CoT) prompting has significantly enhanced the mathematical reasoning capabilities of Large Language Models. We find existing fine-tuning datasets frequently suffer from the "answer right but reasoning wrong" probelm, where correct final answers are derived from hallucinated, redundant, or logically invalid intermediate steps. This paper proposes EntroCoT, a unified framework for automatically identifying and refining low-quality CoT supervision traces. EntroCoT first proposes an entropy-based mechanism to segment the reasoning trace into multiple steps at uncertain junctures, and then introduces a Monte Carlo rollout-based mechanism to evaluate the marginal contribution of each step. By accurately filtering deceptive reasoning samples, EntroCoT constructs a high-quality dataset where every intermediate step in each reasoning trace facilitates the final answer. Extensive experiments on mathematical benchmarks demonstrate that fine-tuning on the subset constructed by EntroCoT consistently outperforms the baseslines of full-dataset supervision.
Abstract:Large Language Models (LLMs) are increasingly serving as autonomous agents, and their utilization of external tools via the Model Context Protocol (MCP) is considered a future trend. Current MCP evaluation sets suffer from issues such as reliance on external MCP services and a lack of difficulty awareness. To address these limitations, we propose MCPAgentBench, a benchmark based on real-world MCP definitions designed to evaluate the tool-use capabilities of agents. We construct a dataset containing authentic tasks and simulated MCP tools. The evaluation employs a dynamic sandbox environment that presents agents with candidate tool lists containing distractors, thereby testing their tool selection and discrimination abilities. Furthermore, we introduce comprehensive metrics to measure both task completion rates and execution efficiency. Experiments conducted on various latest mainstream Large Language Models reveal significant performance differences in handling complex, multi-step tool invocations. All code is open-source at Github.




Abstract:Large language models (LLMs) have demonstrated strong reasoning abilities across specialized domains, motivating research into their application to legal reasoning. However, existing legal benchmarks often conflate factual recall with genuine inference, fragment the reasoning process, and overlook the quality of reasoning. To address these limitations, we introduce MSLR, the first Chinese multi-step legal reasoning dataset grounded in real-world judicial decision making. MSLR adopts the IRAC framework (Issue, Rule, Application, Conclusion) to model structured expert reasoning from official legal documents. In addition, we design a scalable Human-LLM collaborative annotation pipeline that efficiently produces fine-grained step-level reasoning annotations and provides a reusable methodological framework for multi-step reasoning datasets. Evaluation of multiple LLMs on MSLR shows only moderate performance, highlighting the challenges of adapting to complex legal reasoning. Further experiments demonstrate that Self-Initiated Chain-of-Thought prompts generated by models autonomously improve reasoning coherence and quality, outperforming human-designed prompts. MSLR contributes to advancing LLM reasoning and Chain-of-Thought strategies and offers open resources for future research. The dataset and code are available at https://github.com/yuwenhan07/MSLR-Bench and https://law.sjtu.edu.cn/flszyjzx/index.html.
Abstract:Document Visual Question Answering (DocVQA) is a fundamental task for multimodal document understanding and a key testbed for vision language reasoning. However, most existing DocVQA datasets are limited to the page level and lack fine grained spatial grounding, constraining the interpretability and reasoning capability of Vision Language Models (VLMs). To address this gap, we introduce BBox DocVQA a large scale, bounding box grounded dataset designed to enhance spatial reasoning and evidence localization in visual documents. We further present an automated construction pipeline, Segment Judge and Generate, which integrates a segment model for region segmentation, a VLM for semantic judgment, and another advanced VLM for question answer generation, followed by human verification for quality assurance. The resulting dataset contains 3.6 K diverse documents and 32 K QA pairs, encompassing single and multi region as well as single and multi page scenarios. Each QA instance is grounded on explicit bounding boxes, enabling fine grained evaluation of spatial semantic alignment. Benchmarking multiple state of the art VLMs (e.g., GPT 5, Qwen2.5 VL, and InternVL) on BBox DocVQA reveals persistent challenges in spatial grounding and reasoning accuracy. Furthermore, fine tuning on BBox DocVQA substantially improves both bounding box localization and answer generation, validating its effectiveness for enhancing the reasoning ability of VLMs. Our dataset and code will be publicly released to advance research on interpretable and spatially grounded vision language reasoning.




Abstract:Large language models (LLMs) have demonstrated remarkable success across various tasks, accompanied by a continuous increase in their parameter size. Parameter-efficient fine-tuning (PEFT) methods, such as Low-Rank Adaptation (LoRA), address the challenges of fine-tuning LLMs by significantly reducing the number of trainable parameters. Recent studies have integrated LoRA with Mixture of Experts (MoE) architectures, leveraging multiple adapter experts and gating mechanisms to further improve fine-tuning performance. However, existing approaches primarily focus on adjusting the allocations of adapter experts per layer to optimize the introduced trainable parameter size, while neglecting a critical factor of adapters' rank. To this end, we propose a hierarchical scheme for expert allocation and rank configuration, HILO, which dynamically adjusts the number and rank of adapter experts across layers, matching the varying representational complexity of model layers in adapter-granularity. Extensive experiments on multiple benchmark tasks demonstrate that HILO outperforms existing methods in accuracy while introducing fewer trainable parameters, providing an efficient and practical solution for fine-tuning LLMs.




Abstract:While Retrieval-Augmented Generation (RAG) plays a crucial role in the application of Large Language Models (LLMs), existing retrieval methods in knowledge-dense domains like law and medicine still suffer from a lack of multi-perspective views, which are essential for improving interpretability and reliability. Previous research on multi-view retrieval often focused solely on different semantic forms of queries, neglecting the expression of specific domain knowledge perspectives. This paper introduces a novel multi-view RAG framework, MVRAG, tailored for knowledge-dense domains that utilizes intention-aware query rewriting from multiple domain viewpoints to enhance retrieval precision, thereby improving the effectiveness of the final inference. Experiments conducted on legal and medical case retrieval demonstrate significant improvements in recall and precision rates with our framework. Our multi-perspective retrieval approach unleashes the potential of multi-view information enhancing RAG tasks, accelerating the further application of LLMs in knowledge-intensive fields.
Abstract:The Metaverse is gaining attention among academics as maturing technologies empower the promises and envisagements of a multi-purpose, integrated virtual environment. An interactive and immersive socialization experience between people is one of the promises of the Metaverse. In spite of the rapid advancements in current technologies, the computation required for a smooth, seamless and immersive socialization experience in the Metaverse is overbearing, and the accumulated user experience is essential to be considered. The computation burden calls for computation offloading, where the integration of virtual and physical world scenes is offloaded to an edge server. This paper introduces a novel Quality-of-Service (QoS) model for the accumulated experience in multi-user socialization on a multichannel wireless network. This QoS model utilizes deep reinforcement learning approaches to find the near-optimal channel resource allocation. Comprehensive experiments demonstrate that the adoption of the QoS model enhances the overall socialization experience.




Abstract:The emergence of foundation models, including language and vision models, has reshaped AI's landscape, offering capabilities across various applications. Deploying and fine-tuning these large models, like GPT-3 and BERT, presents challenges, especially in the current foundation model era. We introduce Emulator-Assisted Tuning (EAT) combined with Parameter-Efficient Fine-Tuning (PEFT) to form Parameter-Efficient Emulator-Assisted Tuning (PEAT). Further, we expand this into federated learning as Federated PEAT (FedPEAT). FedPEAT uses adapters, emulators, and PEFT for federated model tuning, enhancing model privacy and memory efficiency. Adapters adjust pre-trained models, while emulators give a compact representation of original models, addressing both privacy and efficiency. Adaptable to various neural networks, our approach also uses deep reinforcement learning for hyper-parameter optimization. We tested FedPEAT in a unique scenario with a server participating in collaborative federated tuning, showcasing its potential in tackling foundation model challenges.



Abstract:The efficient deployment and fine-tuning of foundation models are pivotal in contemporary artificial intelligence. In this study, we present a groundbreaking paradigm integrating Mobile Edge Computing (MEC) with foundation models, specifically designed to enhance local task performance on user equipment (UE). Central to our approach is the innovative Emulator-Adapter architecture, segmenting the foundation model into two cohesive modules. This design not only conserves computational resources but also ensures adaptability and fine-tuning efficiency for downstream tasks. Additionally, we introduce an advanced resource allocation mechanism that is fine-tuned to the needs of the Emulator-Adapter structure in decentralized settings. To address the challenges presented by this system, we employ a hybrid multi-agent Deep Reinforcement Learning (DRL) strategy, adept at handling mixed discrete-continuous action spaces, ensuring dynamic and optimal resource allocations. Our comprehensive simulations and validations underscore the practical viability of our approach, demonstrating its robustness, efficiency, and scalability. Collectively, this work offers a fresh perspective on deploying foundation models and balancing computational efficiency with task proficiency.